Loading…
Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces
The electronic structure and hole-injection properties of ambient contaminated molybdenum trioxide (MoO3) surfaces are studied by ultraviolet and inverse photoemission spectroscopy, and current-voltage measurements. Contamination reduces the work function (WF), electron affinity (EA) and ionization...
Saved in:
Published in: | Applied physics letters 2010-03, Vol.96 (13) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electronic structure and hole-injection properties of ambient contaminated molybdenum trioxide (MoO3) surfaces are studied by ultraviolet and inverse photoemission spectroscopy, and current-voltage measurements. Contamination reduces the work function (WF), electron affinity (EA) and ionization energy by about 1 eV with respect to the freshly evaporated film, to values of 5.7 eV, 5.5 eV, and 8.6 eV, respectively. However, the WF and EA remain sufficiently large that the hole-injection properties of MoO3 are not affected by contamination. The results are of particular importance in view of potential applications of transition metal oxides for low-cost manufacturing of devices in low-vacuum or nonvacuum environment. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3374333 |