Loading…

High magnetocrystalline anisotropy in oxides with near cubic local environments

We investigate magnetic coercivity in double perovskite related oxides, based on first principles calculations of the magnetic properties and magnetocrystalline anisotropy. The Re-based materials studied have large magnetic moments on Re (nearly 1 μB in Sr2CrReO6) and relatively large magnetocrystal...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2013-03, Vol.102 (10)
Main Authors: Chen, Xin, Parker, David, Ong, Khuong P., Du, Mao-Hua, Singh, David J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate magnetic coercivity in double perovskite related oxides, based on first principles calculations of the magnetic properties and magnetocrystalline anisotropy. The Re-based materials studied have large magnetic moments on Re (nearly 1 μB in Sr2CrReO6) and relatively large magnetocrystalline anisotropy energies. This is unexpected considering the octahedral coordination. Based on this, we studied an intergrowth of double perovskite Sr2CrReO6-like and SrTiO3-like blocks. We obtain a very high predicted coercive field in excess of 90 T. This shows that it is possible to have large coercive fields arising from magnetocrystalline anisotropy associated with transition elements in nearly cubic local environments.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4795314