Loading…
Plasmon assisted thermal modulation in nanoparticles
Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for...
Saved in:
Published in: | Optics express 2013-05, Vol.21 (10), p.12145-12158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for device actuation via the unapparent mechanism of plasmon-assisted heat generation and flux. The temperature dependence of the dielectric function and the thermal transport properties of the particles play the central role in the feasibility of the thermally-actuated system, however the behavior of these thermoplasmonic processes is unclear. We experimentally and computationally analyzed modulation via thermoplasmonic processes on a test system of gold (Au) nano-islands. Modulation and energy transport in discontinuous domains exhibited quantitatively different characteristics compared to thin films. The results have implications for all surface plasmon based nano-devices where inevitable small-scale thermal processes are present. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.21.012145 |