Loading…

Plasmon assisted thermal modulation in nanoparticles

Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2013-05, Vol.21 (10), p.12145-12158
Main Authors: Lereu, A L, Farahi, R H, Tetard, L, Enoch, S, Thundat, T, Passian, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for device actuation via the unapparent mechanism of plasmon-assisted heat generation and flux. The temperature dependence of the dielectric function and the thermal transport properties of the particles play the central role in the feasibility of the thermally-actuated system, however the behavior of these thermoplasmonic processes is unclear. We experimentally and computationally analyzed modulation via thermoplasmonic processes on a test system of gold (Au) nano-islands. Modulation and energy transport in discontinuous domains exhibited quantitatively different characteristics compared to thin films. The results have implications for all surface plasmon based nano-devices where inevitable small-scale thermal processes are present.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.21.012145