Loading…

Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1−xN thin films

Piezoelectric wurtzite ScxAl1−xN (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc conte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2012-05, Vol.111 (9)
Main Authors: Zukauskaite, Agne, Wingqvist, Gunilla, Palisaitis, Justinas, Jensen, Jens, Persson, Per O. Å., Matloub, Ramin, Muralt, Paul, Kim, Yunseok, Birch, Jens, Hultman, Lars
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Piezoelectric wurtzite ScxAl1−xN (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 °C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 °C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x ≥ 0.2 when substrate temperature is increased from 400 to 800 °C. The piezoelectric response of epitaxial ScxAl1−xN films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4714220