Loading…
An embedded mesh method in a multiple material ALE
A new approach for treating the mechanical interactions of overlapping finite element meshes is presented. Referred to as embedded mesh methods here, these overlapping mesh methods typically include a foreground solid mesh and a background Euler fluid grid or solid mesh. A number of different approa...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2012-10, Vol.245-246, p.273-289 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new approach for treating the mechanical interactions of overlapping finite element meshes is presented. Referred to as embedded mesh methods here, these overlapping mesh methods typically include a foreground solid mesh and a background Euler fluid grid or solid mesh. A number of different approaches have been used in previous work to characterize the interactions of the background and foreground meshes at the interface. Lagrange multipliers are well suited to enforce the continuity constraints but care must be taken such that the resulting formulation is stable. Several Lagrange multiplier techniques are examined in this work and applied to coupling solid meshes and fluid-structure interaction type problems. In addition, details regarding implementation in a two-step, multi-material, Arbitrary Lagrangian Eulerian (ALE) code are presented. Example problems demonstrate convergence and applicability to a range of problems. In particular, the fluid-structure interaction examples focus on blast applications. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2012.07.014 |