Loading…
Conduction of topologically protected charged ferroelectric domain walls
We report on the observation of nanoscale conduction at ferroelectric domain walls in hexagonal HoMnO(3) protected by the topology of multiferroic vortices using in situ conductive atomic force microscopy, piezoresponse force microscopy, and Kelvin-probe force microscopy at low temperatures. In addi...
Saved in:
Published in: | Physical review letters 2012-02, Vol.108 (7), p.077203-077203, Article 077203 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the observation of nanoscale conduction at ferroelectric domain walls in hexagonal HoMnO(3) protected by the topology of multiferroic vortices using in situ conductive atomic force microscopy, piezoresponse force microscopy, and Kelvin-probe force microscopy at low temperatures. In addition to previously observed Schottky-like rectification at low bias [Phys. Rev. Lett. 104, 217601 (2010)], conductance spectra reveal that negatively charged tail-to-tail walls exhibit enhanced conduction at high forward bias, while positively charged head-to-head walls exhibit suppressed conduction at high reverse bias. Our results pave the way for understanding the semiconducting properties of the domains and domain walls in small-gap ferroelectrics. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.077203 |