Loading…
Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization
DNA linker mediated self-assembly is emerging as a very general strategy for designing new materials. In this Letter, we characterize both the dynamics and thermodynamics of nanoparticle-DNA self-assembly by molecular dynamics simulations from a new coarse-grained model. We establish the general pha...
Saved in:
Published in: | Physical review letters 2011-05, Vol.106 (21), p.215501-215501, Article 215501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DNA linker mediated self-assembly is emerging as a very general strategy for designing new materials. In this Letter, we characterize both the dynamics and thermodynamics of nanoparticle-DNA self-assembly by molecular dynamics simulations from a new coarse-grained model. We establish the general phase diagram and discuss the stability of a previously overlooked crystalline phase (D-bcc). We also characterize universal properties about the dynamics of crystallization. We point out the connection to f-star polymer systems and discuss the implications for ongoing experiments as well as for the general field of DNA mediated self-assembly. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.106.215501 |