Loading…
Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe
We report measurements of the electrical and thermal transport on the hexagonal heavy-fermion metal YbAgGe for temperatures T ≥ 40 mK and in magnetic fields H∥ab up to 14 T. This distorted kagome-lattice system displays a series of magnetic states and a quantum critical point at H(c) = 4.5 T. The...
Saved in:
Published in: | Physical review letters 2013-04, Vol.110 (17), p.176402-176402, Article 176402 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report measurements of the electrical and thermal transport on the hexagonal heavy-fermion metal YbAgGe for temperatures T ≥ 40 mK and in magnetic fields H∥ab up to 14 T. This distorted kagome-lattice system displays a series of magnetic states and a quantum critical point at H(c) = 4.5 T. The Lorenz ratio L(T)/L0 displays a marked reduction only close to H(c). A T-linear contribution below 120 mK, present at all different fields, allows us to extrapolate the Lorenz ratio towards T = 0. At the critical field this yields L/L0 = 0.92±0.03, suggesting a violation of the Wiedemann-Franz law due to strong inelastic scattering. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.110.176402 |