Loading…
Scale invariance at the onset of turbulence in Couette flow
Laminar-turbulent intermittency is intrinsic to the transitional regime of a wide range of fluid flows including pipe, channel, boundary layer, and Couette flow. In the latter turbulent spots can grow and form continuous stripes, yet in the stripe-normal direction they remain interspersed by laminar...
Saved in:
Published in: | Physical review letters 2013-05, Vol.110 (20), p.204502-204502, Article 204502 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laminar-turbulent intermittency is intrinsic to the transitional regime of a wide range of fluid flows including pipe, channel, boundary layer, and Couette flow. In the latter turbulent spots can grow and form continuous stripes, yet in the stripe-normal direction they remain interspersed by laminar fluid. We carry out direct numerical simulations in a long narrow domain and observe that individual turbulent stripes are transient. In agreement with recent observations in pipe flow, we find that turbulence becomes sustained at a distinct critical point once the spatial proliferation outweighs the inherent decaying process. By resolving the asymptotic size distributions close to criticality we can for the first time demonstrate scale invariance at the onset of turbulence. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.110.204502 |