Loading…
Experimental validation of the interfacial form of the Wiedemann-Franz law
The thermal conductivity of four Pd/Ir metal multilayers of total thickness 390 nm with 40, 80, 120, and 200 Pd/Ir interfaces are measured at temperatures between 78 and 295 K using time-domain thermoreflectance. The thermal interface conductance G of the Pd/Ir interface is derived from the differen...
Saved in:
Published in: | Physical review letters 2012-06, Vol.108 (25), p.255901-255901, Article 255901 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The thermal conductivity of four Pd/Ir metal multilayers of total thickness 390 nm with 40, 80, 120, and 200 Pd/Ir interfaces are measured at temperatures between 78 and 295 K using time-domain thermoreflectance. The thermal interface conductance G of the Pd/Ir interface is derived from the differences in thermal conductivity between the multilayers. A comparison of G to previously reported data for the electronic specific resistance of the Pd/Ir interface at 4 K supports the validity of the interfacial form of the Wiedemann-Franz law. The Lorenz number deduced from this comparison is within 10% of the Sommerfeld value at all temperatures, well within the experimental uncertainties of ≈ 20%. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.255901 |