Loading…

Growth structure and work function of bilayer graphene on Pd(111)

Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443
Main Authors: Murata, Y, Nie, S, Ebnonnasir, A, Starodub, E, Kappes, B B, McCarty, K F, Ciobanu, C V, Kodambaka, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793
cites cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793
container_end_page
container_issue 20
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 85
creator Murata, Y
Nie, S
Ebnonnasir, A
Starodub, E
Kappes, B B
McCarty, K F
Ciobanu, C V
Kodambaka, S
description Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.
doi_str_mv 10.1103/physrevb.85.205443
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1104132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701116000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</originalsourceid><addsrcrecordid>eNqNkN1KwzAUgIsoOKcv4FXxal50npM0bXo5h05h4BAF70Kapq66NTVJN_b2ZtQH8Ob88XHO4Yuia4QpItC7bn1wVu_KKWdTAixN6Uk0QsYgIZR9nIYaCp4AEjyPLpz7AsC0SMkomi2s2ft17Lztle-tjmVbxXtjv-O6b5VvTBubOi6bjTxoG39a2a11q-MwXlUTRLy9jM5quXH66i-Po_fHh7f5U7J8WTzPZ8tEpQx8UvGUKVLrInQZFirTpaKplJTlHMq6yksqc9QgOdFZhaRQVCmJOc8LmpEQxtHNsNc43winGq_VWpm21cqLICFFSgI0GaDOmp9eOy-2jVN6s5GtNr0TmEP4OQOAf6FAOePH02RAlTUueK5FZ5uttAeBcDxNxSr4f9W7e8GZGPzTX0iseEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701038589</pqid></control><display><type>article</type><title>Growth structure and work function of bilayer graphene on Pd(111)</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</creator><creatorcontrib>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</creatorcontrib><description>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/physrevb.85.205443</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed matter ; Electrostatics ; Graphene ; Low energy ; Nucleation ; Orientation ; Palladium ; Planes ; Work functions</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</citedby><cites>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1104132$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murata, Y</creatorcontrib><creatorcontrib>Nie, S</creatorcontrib><creatorcontrib>Ebnonnasir, A</creatorcontrib><creatorcontrib>Starodub, E</creatorcontrib><creatorcontrib>Kappes, B B</creatorcontrib><creatorcontrib>McCarty, K F</creatorcontrib><creatorcontrib>Ciobanu, C V</creatorcontrib><creatorcontrib>Kodambaka, S</creatorcontrib><title>Growth structure and work function of bilayer graphene on Pd(111)</title><title>Physical review. B, Condensed matter and materials physics</title><description>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</description><subject>Condensed matter</subject><subject>Electrostatics</subject><subject>Graphene</subject><subject>Low energy</subject><subject>Nucleation</subject><subject>Orientation</subject><subject>Palladium</subject><subject>Planes</subject><subject>Work functions</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkN1KwzAUgIsoOKcv4FXxal50npM0bXo5h05h4BAF70Kapq66NTVJN_b2ZtQH8Ob88XHO4Yuia4QpItC7bn1wVu_KKWdTAixN6Uk0QsYgIZR9nIYaCp4AEjyPLpz7AsC0SMkomi2s2ft17Lztle-tjmVbxXtjv-O6b5VvTBubOi6bjTxoG39a2a11q-MwXlUTRLy9jM5quXH66i-Po_fHh7f5U7J8WTzPZ8tEpQx8UvGUKVLrInQZFirTpaKplJTlHMq6yksqc9QgOdFZhaRQVCmJOc8LmpEQxtHNsNc43winGq_VWpm21cqLICFFSgI0GaDOmp9eOy-2jVN6s5GtNr0TmEP4OQOAf6FAOePH02RAlTUueK5FZ5uttAeBcDxNxSr4f9W7e8GZGPzTX0iseEs</recordid><startdate>20120524</startdate><enddate>20120524</enddate><creator>Murata, Y</creator><creator>Nie, S</creator><creator>Ebnonnasir, A</creator><creator>Starodub, E</creator><creator>Kappes, B B</creator><creator>McCarty, K F</creator><creator>Ciobanu, C V</creator><creator>Kodambaka, S</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120524</creationdate><title>Growth structure and work function of bilayer graphene on Pd(111)</title><author>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter</topic><topic>Electrostatics</topic><topic>Graphene</topic><topic>Low energy</topic><topic>Nucleation</topic><topic>Orientation</topic><topic>Palladium</topic><topic>Planes</topic><topic>Work functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Murata, Y</creatorcontrib><creatorcontrib>Nie, S</creatorcontrib><creatorcontrib>Ebnonnasir, A</creatorcontrib><creatorcontrib>Starodub, E</creatorcontrib><creatorcontrib>Kappes, B B</creatorcontrib><creatorcontrib>McCarty, K F</creatorcontrib><creatorcontrib>Ciobanu, C V</creatorcontrib><creatorcontrib>Kodambaka, S</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murata, Y</au><au>Nie, S</au><au>Ebnonnasir, A</au><au>Starodub, E</au><au>Kappes, B B</au><au>McCarty, K F</au><au>Ciobanu, C V</au><au>Kodambaka, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth structure and work function of bilayer graphene on Pd(111)</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2012-05-24</date><risdate>2012</risdate><volume>85</volume><issue>20</issue><artnum>205443</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/physrevb.85.205443</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443
issn 1098-0121
1550-235X
language eng
recordid cdi_osti_scitechconnect_1104132
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Condensed matter
Electrostatics
Graphene
Low energy
Nucleation
Orientation
Palladium
Planes
Work functions
title Growth structure and work function of bilayer graphene on Pd(111)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20structure%20and%20work%20function%20of%20bilayer%20graphene%20on%20Pd(111)&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Murata,%20Y&rft.date=2012-05-24&rft.volume=85&rft.issue=20&rft.artnum=205443&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/physrevb.85.205443&rft_dat=%3Cproquest_osti_%3E1701116000%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701038589&rft_id=info:pmid/&rfr_iscdi=true