Loading…
Growth structure and work function of bilayer graphene on Pd(111)
Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 85 |
creator | Murata, Y Nie, S Ebnonnasir, A Starodub, E Kappes, B B McCarty, K F Ciobanu, C V Kodambaka, S |
description | Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers. |
doi_str_mv | 10.1103/physrevb.85.205443 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1104132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701116000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</originalsourceid><addsrcrecordid>eNqNkN1KwzAUgIsoOKcv4FXxal50npM0bXo5h05h4BAF70Kapq66NTVJN_b2ZtQH8Ob88XHO4Yuia4QpItC7bn1wVu_KKWdTAixN6Uk0QsYgIZR9nIYaCp4AEjyPLpz7AsC0SMkomi2s2ft17Lztle-tjmVbxXtjv-O6b5VvTBubOi6bjTxoG39a2a11q-MwXlUTRLy9jM5quXH66i-Po_fHh7f5U7J8WTzPZ8tEpQx8UvGUKVLrInQZFirTpaKplJTlHMq6yksqc9QgOdFZhaRQVCmJOc8LmpEQxtHNsNc43winGq_VWpm21cqLICFFSgI0GaDOmp9eOy-2jVN6s5GtNr0TmEP4OQOAf6FAOePH02RAlTUueK5FZ5uttAeBcDxNxSr4f9W7e8GZGPzTX0iseEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701038589</pqid></control><display><type>article</type><title>Growth structure and work function of bilayer graphene on Pd(111)</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</creator><creatorcontrib>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</creatorcontrib><description>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/physrevb.85.205443</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed matter ; Electrostatics ; Graphene ; Low energy ; Nucleation ; Orientation ; Palladium ; Planes ; Work functions</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</citedby><cites>FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1104132$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murata, Y</creatorcontrib><creatorcontrib>Nie, S</creatorcontrib><creatorcontrib>Ebnonnasir, A</creatorcontrib><creatorcontrib>Starodub, E</creatorcontrib><creatorcontrib>Kappes, B B</creatorcontrib><creatorcontrib>McCarty, K F</creatorcontrib><creatorcontrib>Ciobanu, C V</creatorcontrib><creatorcontrib>Kodambaka, S</creatorcontrib><title>Growth structure and work function of bilayer graphene on Pd(111)</title><title>Physical review. B, Condensed matter and materials physics</title><description>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</description><subject>Condensed matter</subject><subject>Electrostatics</subject><subject>Graphene</subject><subject>Low energy</subject><subject>Nucleation</subject><subject>Orientation</subject><subject>Palladium</subject><subject>Planes</subject><subject>Work functions</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkN1KwzAUgIsoOKcv4FXxal50npM0bXo5h05h4BAF70Kapq66NTVJN_b2ZtQH8Ob88XHO4Yuia4QpItC7bn1wVu_KKWdTAixN6Uk0QsYgIZR9nIYaCp4AEjyPLpz7AsC0SMkomi2s2ft17Lztle-tjmVbxXtjv-O6b5VvTBubOi6bjTxoG39a2a11q-MwXlUTRLy9jM5quXH66i-Po_fHh7f5U7J8WTzPZ8tEpQx8UvGUKVLrInQZFirTpaKplJTlHMq6yksqc9QgOdFZhaRQVCmJOc8LmpEQxtHNsNc43winGq_VWpm21cqLICFFSgI0GaDOmp9eOy-2jVN6s5GtNr0TmEP4OQOAf6FAOePH02RAlTUueK5FZ5uttAeBcDxNxSr4f9W7e8GZGPzTX0iseEs</recordid><startdate>20120524</startdate><enddate>20120524</enddate><creator>Murata, Y</creator><creator>Nie, S</creator><creator>Ebnonnasir, A</creator><creator>Starodub, E</creator><creator>Kappes, B B</creator><creator>McCarty, K F</creator><creator>Ciobanu, C V</creator><creator>Kodambaka, S</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120524</creationdate><title>Growth structure and work function of bilayer graphene on Pd(111)</title><author>Murata, Y ; Nie, S ; Ebnonnasir, A ; Starodub, E ; Kappes, B B ; McCarty, K F ; Ciobanu, C V ; Kodambaka, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter</topic><topic>Electrostatics</topic><topic>Graphene</topic><topic>Low energy</topic><topic>Nucleation</topic><topic>Orientation</topic><topic>Palladium</topic><topic>Planes</topic><topic>Work functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Murata, Y</creatorcontrib><creatorcontrib>Nie, S</creatorcontrib><creatorcontrib>Ebnonnasir, A</creatorcontrib><creatorcontrib>Starodub, E</creatorcontrib><creatorcontrib>Kappes, B B</creatorcontrib><creatorcontrib>McCarty, K F</creatorcontrib><creatorcontrib>Ciobanu, C V</creatorcontrib><creatorcontrib>Kodambaka, S</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murata, Y</au><au>Nie, S</au><au>Ebnonnasir, A</au><au>Starodub, E</au><au>Kappes, B B</au><au>McCarty, K F</au><au>Ciobanu, C V</au><au>Kodambaka, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth structure and work function of bilayer graphene on Pd(111)</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2012-05-24</date><risdate>2012</risdate><volume>85</volume><issue>20</issue><artnum>205443</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the faceted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, the strengths of which depend on the orientations of the two graphene layers.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/physrevb.85.205443</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2012-05, Vol.85 (20), Article 205443 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_osti_scitechconnect_1104132 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Condensed matter Electrostatics Graphene Low energy Nucleation Orientation Palladium Planes Work functions |
title | Growth structure and work function of bilayer graphene on Pd(111) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20structure%20and%20work%20function%20of%20bilayer%20graphene%20on%20Pd(111)&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Murata,%20Y&rft.date=2012-05-24&rft.volume=85&rft.issue=20&rft.artnum=205443&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/physrevb.85.205443&rft_dat=%3Cproquest_osti_%3E1701116000%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-d845c2fe9450619c6ebc34aa35780bfd7b3a71e0a82e6d129c3cca17879362793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701038589&rft_id=info:pmid/&rfr_iscdi=true |