Loading…
Giant electron-spin g factors in a ferromagnetic nanoparticle
We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale cobalt particle at T = 60 mK, and find effective single-electron spin g factors [approximate] 7.3. These large g factors do not result from the typical orbital contribution to g factors, sinc...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075303 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 88 |
creator | Gartland, P. Birk, F. T. Jiang, W. Davidović, D. |
description | We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale cobalt particle at T = 60 mK, and find effective single-electron spin g factors [approximate] 7.3. These large g factors do not result from the typical orbital contribution to g factors, since the orbital angular momentum is quenched. Instead, they are due to nontrivial many-body excitations. A kink in the plot of conductance vs voltage and magnetic field is a signature of degenerate total spin on the particle. Spin-orbit interactions cause the new particle eigenstates to have "spin" that is an admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for the total change in "spin" on the particle during a single-electron tunneling event to be Delta S' = 3/2, leading to a g factor of around 6. |
doi_str_mv | 10.1103/PhysRevB.88.075303 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1104362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709749170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23</originalsourceid><addsrcrecordid>eNo1kEFLAzEUhIMoWKt_wNPiycvWvM1mkxw8aNEqFBRR8BbSbLaNbJM1SYX-e1NWTzMPPmYeg9Al4BkAJjevm318Mz_3M85nmFGCyRGaAKW4rAj9PM4eC15iqOAUncX4hTHUoq4m6HZhlUuF6Y1OwbsyDtYV66JTOvkQi3yoojMh-K1aO5OsLpxyflAh296co5NO9dFc_OkUfTw-vM-fyuXL4nl-tyw1wSyVVFFoMYNGEaaBtLXguG0561a5B6BhYkUE7UjmWkob2jQd5Uy3tKKs5qYiU3Q15vqYrIzaJqM32juXv5Z5gJo0B-h6hIbgv3cmJrm1UZu-V874XZTAsGC1yJLRakR18DEG08kh2K0Kewn4kEfk_6CSczkOSn4BTSppew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709749170</pqid></control><display><type>article</type><title>Giant electron-spin g factors in a ferromagnetic nanoparticle</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Gartland, P. ; Birk, F. T. ; Jiang, W. ; Davidović, D.</creator><creatorcontrib>Gartland, P. ; Birk, F. T. ; Jiang, W. ; Davidović, D.</creatorcontrib><description>We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale cobalt particle at T = 60 mK, and find effective single-electron spin g factors [approximate] 7.3. These large g factors do not result from the typical orbital contribution to g factors, since the orbital angular momentum is quenched. Instead, they are due to nontrivial many-body excitations. A kink in the plot of conductance vs voltage and magnetic field is a signature of degenerate total spin on the particle. Spin-orbit interactions cause the new particle eigenstates to have "spin" that is an admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for the total change in "spin" on the particle during a single-electron tunneling event to be Delta S' = 3/2, leading to a g factor of around 6.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.075303</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed matter ; Energy levels ; Ferromagnetism ; Nanostructure ; Orbitals ; Particle spin ; Signatures ; Tunneling</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075303</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23</citedby><cites>FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1104362$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gartland, P.</creatorcontrib><creatorcontrib>Birk, F. T.</creatorcontrib><creatorcontrib>Jiang, W.</creatorcontrib><creatorcontrib>Davidović, D.</creatorcontrib><title>Giant electron-spin g factors in a ferromagnetic nanoparticle</title><title>Physical review. B, Condensed matter and materials physics</title><description>We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale cobalt particle at T = 60 mK, and find effective single-electron spin g factors [approximate] 7.3. These large g factors do not result from the typical orbital contribution to g factors, since the orbital angular momentum is quenched. Instead, they are due to nontrivial many-body excitations. A kink in the plot of conductance vs voltage and magnetic field is a signature of degenerate total spin on the particle. Spin-orbit interactions cause the new particle eigenstates to have "spin" that is an admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for the total change in "spin" on the particle during a single-electron tunneling event to be Delta S' = 3/2, leading to a g factor of around 6.</description><subject>Condensed matter</subject><subject>Energy levels</subject><subject>Ferromagnetism</subject><subject>Nanostructure</subject><subject>Orbitals</subject><subject>Particle spin</subject><subject>Signatures</subject><subject>Tunneling</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLAzEUhIMoWKt_wNPiycvWvM1mkxw8aNEqFBRR8BbSbLaNbJM1SYX-e1NWTzMPPmYeg9Al4BkAJjevm318Mz_3M85nmFGCyRGaAKW4rAj9PM4eC15iqOAUncX4hTHUoq4m6HZhlUuF6Y1OwbsyDtYV66JTOvkQi3yoojMh-K1aO5OsLpxyflAh296co5NO9dFc_OkUfTw-vM-fyuXL4nl-tyw1wSyVVFFoMYNGEaaBtLXguG0561a5B6BhYkUE7UjmWkob2jQd5Uy3tKKs5qYiU3Q15vqYrIzaJqM32juXv5Z5gJo0B-h6hIbgv3cmJrm1UZu-V874XZTAsGC1yJLRakR18DEG08kh2K0Kewn4kEfk_6CSczkOSn4BTSppew</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Gartland, P.</creator><creator>Birk, F. T.</creator><creator>Jiang, W.</creator><creator>Davidović, D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130805</creationdate><title>Giant electron-spin g factors in a ferromagnetic nanoparticle</title><author>Gartland, P. ; Birk, F. T. ; Jiang, W. ; Davidović, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter</topic><topic>Energy levels</topic><topic>Ferromagnetism</topic><topic>Nanostructure</topic><topic>Orbitals</topic><topic>Particle spin</topic><topic>Signatures</topic><topic>Tunneling</topic><toplevel>online_resources</toplevel><creatorcontrib>Gartland, P.</creatorcontrib><creatorcontrib>Birk, F. T.</creatorcontrib><creatorcontrib>Jiang, W.</creatorcontrib><creatorcontrib>Davidović, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gartland, P.</au><au>Birk, F. T.</au><au>Jiang, W.</au><au>Davidović, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant electron-spin g factors in a ferromagnetic nanoparticle</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-08-05</date><risdate>2013</risdate><volume>88</volume><issue>7</issue><artnum>075303</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale cobalt particle at T = 60 mK, and find effective single-electron spin g factors [approximate] 7.3. These large g factors do not result from the typical orbital contribution to g factors, since the orbital angular momentum is quenched. Instead, they are due to nontrivial many-body excitations. A kink in the plot of conductance vs voltage and magnetic field is a signature of degenerate total spin on the particle. Spin-orbit interactions cause the new particle eigenstates to have "spin" that is an admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for the total change in "spin" on the particle during a single-electron tunneling event to be Delta S' = 3/2, leading to a g factor of around 6.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.88.075303</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075303 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_osti_scitechconnect_1104362 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Condensed matter Energy levels Ferromagnetism Nanostructure Orbitals Particle spin Signatures Tunneling |
title | Giant electron-spin g factors in a ferromagnetic nanoparticle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20electron-spin%20g%20factors%20in%20a%20ferromagnetic%20nanoparticle&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Gartland,%20P.&rft.date=2013-08-05&rft.volume=88&rft.issue=7&rft.artnum=075303&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.075303&rft_dat=%3Cproquest_osti_%3E1709749170%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-5a51d0716a37c13d4980dd87fbfac11679b395f35a5d556566f587cd525748e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709749170&rft_id=info:pmid/&rfr_iscdi=true |