Loading…

Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation

Staphylococcus aureus VraR, a vancomycin-resistance-associated response regulator, activates a cell-wall-stress stimulon in response to antibiotics that inhibit cell wall formation. X-ray crystal structures of VraR in both unphosphorylated and beryllofluoride-activated states have been determined, r...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (21), p.8525-8530
Main Authors: Leonard, Paul G., Golemi-Kotra, Dasantila, Stock, Ann M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Staphylococcus aureus VraR, a vancomycin-resistance-associated response regulator, activates a cell-wall-stress stimulon in response to antibiotics that inhibit cell wall formation. X-ray crystal structures of VraR in both unphosphorylated and beryllofluoride-activated states have been determined, revealing a mechanism of phosphorylation-induced dimerization that features a deep hydrophobic pocket at the center of the receiver domain interface. Unphosphorylated VraR exists in a closed conformation that inhibits dimer formation. Phosphorylation at the active site promotes conformational changes that are propagated throughout the receiver domain, promoting the opening of a hydrophobic pocket that is essential for homodimer formation and enhanced DNA-binding activity. This prominent feature in the VraR dimer can potentially be exploited for the development of novel therapeutics to counteract antibiotic resistance in this important pathogen.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1302819110