Loading…
Tunable Metallic Conductance in Ferroelectric Nanodomains
Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced sole...
Saved in:
Published in: | Nano letters 2012-01, Vol.12 (1), p.209-213 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543 |
---|---|
cites | cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543 |
container_end_page | 213 |
container_issue | 1 |
container_start_page | 209 |
container_title | Nano letters |
container_volume | 12 |
creator | Maksymovych, Peter Morozovska, Anna N Yu, Pu Eliseev, Eugene A Chu, Ying-Hao Ramesh, Ramamoorthy Baddorf, Arthur P Kalinin, Sergei V |
description | Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field. |
doi_str_mv | 10.1021/nl203349b |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1113156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052664</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</originalsourceid><addsrcrecordid>eNp90U1rGzEQBmAREvLh9pA_UEwgtD241ehrV8dg6raQpJf0LLTaEdkgS6m0e-i_j4wd-xKCDiPQw4x4h5BLoN-AMvgeA6OcC90dkXOQnC6U1ux4f2_FGbko5YlSqrmkp-SMMWihofqc6Icp2i7g_A5HG8Lg5ssU-8mNNjqcD3G-wpwTBnRjro_3NqY-re0Qywdy4m0o-HFXZ-Tv6sfD8tfi9s_P38ub24UVVIwL7lF5BNnxxrdc9FR6LevxPdMONSghG6daLzh4dK3ttFWqQyW73gFKwWfkats3lXEwxQ0jukeXYqxfMgDAQaqKPm_Rc07_JiyjWQ_FYQg2YpqK0RvEFGzkl3clNIpRyZTaTP66pS6nUjJ685yHtc3_DVCzCd7sg6_2067t1K2x38vXpCu43gFbnA0-14CHcnBSNKru6-CsK-YpTTnWcN8Y-AIrnJTP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762052664</pqid></control><display><type>article</type><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V</creator><creatorcontrib>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences</creatorcontrib><description>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl203349b</identifier><identifier>PMID: 22181709</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carrier density ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductance ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Domain walls ; Electric Conductivity ; Electric fields ; Electromagnetic Fields ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Macromolecular Substances - radiation effects ; Materials Testing ; Metal-insulator transitions and other electronic transitions ; Metals - chemistry ; Metals - radiation effects ; Molecular Conformation - radiation effects ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Physics ; Polarization ; Surface Properties - radiation effects ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Titanates</subject><ispartof>Nano letters, 2012-01, Vol.12 (1), p.209-213</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</citedby><cites>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25476153$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22181709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1113156$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksymovych, Peter</creatorcontrib><creatorcontrib>Morozovska, Anna N</creatorcontrib><creatorcontrib>Yu, Pu</creatorcontrib><creatorcontrib>Eliseev, Eugene A</creatorcontrib><creatorcontrib>Chu, Ying-Hao</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Kalinin, Sergei V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</description><subject>Carrier density</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductance</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Domain walls</subject><subject>Electric Conductivity</subject><subject>Electric fields</subject><subject>Electromagnetic Fields</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecular Substances - radiation effects</subject><subject>Materials Testing</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>Metals - chemistry</subject><subject>Metals - radiation effects</subject><subject>Molecular Conformation - radiation effects</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Physics</subject><subject>Polarization</subject><subject>Surface Properties - radiation effects</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Titanates</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90U1rGzEQBmAREvLh9pA_UEwgtD241ehrV8dg6raQpJf0LLTaEdkgS6m0e-i_j4wd-xKCDiPQw4x4h5BLoN-AMvgeA6OcC90dkXOQnC6U1ux4f2_FGbko5YlSqrmkp-SMMWihofqc6Icp2i7g_A5HG8Lg5ssU-8mNNjqcD3G-wpwTBnRjro_3NqY-re0Qywdy4m0o-HFXZ-Tv6sfD8tfi9s_P38ub24UVVIwL7lF5BNnxxrdc9FR6LevxPdMONSghG6daLzh4dK3ttFWqQyW73gFKwWfkats3lXEwxQ0jukeXYqxfMgDAQaqKPm_Rc07_JiyjWQ_FYQg2YpqK0RvEFGzkl3clNIpRyZTaTP66pS6nUjJ685yHtc3_DVCzCd7sg6_2067t1K2x38vXpCu43gFbnA0-14CHcnBSNKru6-CsK-YpTTnWcN8Y-AIrnJTP</recordid><startdate>20120111</startdate><enddate>20120111</enddate><creator>Maksymovych, Peter</creator><creator>Morozovska, Anna N</creator><creator>Yu, Pu</creator><creator>Eliseev, Eugene A</creator><creator>Chu, Ying-Hao</creator><creator>Ramesh, Ramamoorthy</creator><creator>Baddorf, Arthur P</creator><creator>Kalinin, Sergei V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120111</creationdate><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><author>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carrier density</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductance</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Domain walls</topic><topic>Electric Conductivity</topic><topic>Electric fields</topic><topic>Electromagnetic Fields</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecular Substances - radiation effects</topic><topic>Materials Testing</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>Metals - chemistry</topic><topic>Metals - radiation effects</topic><topic>Molecular Conformation - radiation effects</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Physics</topic><topic>Polarization</topic><topic>Surface Properties - radiation effects</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, Peter</creatorcontrib><creatorcontrib>Morozovska, Anna N</creatorcontrib><creatorcontrib>Yu, Pu</creatorcontrib><creatorcontrib>Eliseev, Eugene A</creatorcontrib><creatorcontrib>Chu, Ying-Hao</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Kalinin, Sergei V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, Peter</au><au>Morozovska, Anna N</au><au>Yu, Pu</au><au>Eliseev, Eugene A</au><au>Chu, Ying-Hao</au><au>Ramesh, Ramamoorthy</au><au>Baddorf, Arthur P</au><au>Kalinin, Sergei V</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Metallic Conductance in Ferroelectric Nanodomains</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-01-11</date><risdate>2012</risdate><volume>12</volume><issue>1</issue><spage>209</spage><epage>213</epage><pages>209-213</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22181709</pmid><doi>10.1021/nl203349b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-01, Vol.12 (1), p.209-213 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1113156 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Carrier density Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conductance Dielectric, piezoelectric, ferroelectric and antiferroelectric materials Dielectrics, piezoelectrics, and ferroelectrics and their properties Domain walls Electric Conductivity Electric fields Electromagnetic Fields Electron states Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Ferroelectric materials Ferroelectricity Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Macromolecular Substances - chemistry Macromolecular Substances - radiation effects Materials Testing Metal-insulator transitions and other electronic transitions Metals - chemistry Metals - radiation effects Molecular Conformation - radiation effects Nanostructure Nanostructures - chemistry Nanostructures - radiation effects Nanostructures - ultrastructure Physics Polarization Surface Properties - radiation effects Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Titanates |
title | Tunable Metallic Conductance in Ferroelectric Nanodomains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Metallic%20Conductance%20in%20Ferroelectric%20Nanodomains&rft.jtitle=Nano%20letters&rft.au=Maksymovych,%20Peter&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-01-11&rft.volume=12&rft.issue=1&rft.spage=209&rft.epage=213&rft.pages=209-213&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl203349b&rft_dat=%3Cproquest_osti_%3E1762052664%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762052664&rft_id=info:pmid/22181709&rfr_iscdi=true |