Loading…

Tunable Metallic Conductance in Ferroelectric Nanodomains

Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced sole...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2012-01, Vol.12 (1), p.209-213
Main Authors: Maksymovych, Peter, Morozovska, Anna N, Yu, Pu, Eliseev, Eugene A, Chu, Ying-Hao, Ramesh, Ramamoorthy, Baddorf, Arthur P, Kalinin, Sergei V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543
cites cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543
container_end_page 213
container_issue 1
container_start_page 209
container_title Nano letters
container_volume 12
creator Maksymovych, Peter
Morozovska, Anna N
Yu, Pu
Eliseev, Eugene A
Chu, Ying-Hao
Ramesh, Ramamoorthy
Baddorf, Arthur P
Kalinin, Sergei V
description Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.
doi_str_mv 10.1021/nl203349b
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1113156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052664</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</originalsourceid><addsrcrecordid>eNp90U1rGzEQBmAREvLh9pA_UEwgtD241ehrV8dg6raQpJf0LLTaEdkgS6m0e-i_j4wd-xKCDiPQw4x4h5BLoN-AMvgeA6OcC90dkXOQnC6U1ux4f2_FGbko5YlSqrmkp-SMMWihofqc6Icp2i7g_A5HG8Lg5ssU-8mNNjqcD3G-wpwTBnRjro_3NqY-re0Qywdy4m0o-HFXZ-Tv6sfD8tfi9s_P38ub24UVVIwL7lF5BNnxxrdc9FR6LevxPdMONSghG6daLzh4dK3ttFWqQyW73gFKwWfkats3lXEwxQ0jukeXYqxfMgDAQaqKPm_Rc07_JiyjWQ_FYQg2YpqK0RvEFGzkl3clNIpRyZTaTP66pS6nUjJ685yHtc3_DVCzCd7sg6_2067t1K2x38vXpCu43gFbnA0-14CHcnBSNKru6-CsK-YpTTnWcN8Y-AIrnJTP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762052664</pqid></control><display><type>article</type><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V</creator><creatorcontrib>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences</creatorcontrib><description>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl203349b</identifier><identifier>PMID: 22181709</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carrier density ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductance ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Domain walls ; Electric Conductivity ; Electric fields ; Electromagnetic Fields ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Macromolecular Substances - radiation effects ; Materials Testing ; Metal-insulator transitions and other electronic transitions ; Metals - chemistry ; Metals - radiation effects ; Molecular Conformation - radiation effects ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Physics ; Polarization ; Surface Properties - radiation effects ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Titanates</subject><ispartof>Nano letters, 2012-01, Vol.12 (1), p.209-213</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</citedby><cites>FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25476153$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22181709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1113156$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksymovych, Peter</creatorcontrib><creatorcontrib>Morozovska, Anna N</creatorcontrib><creatorcontrib>Yu, Pu</creatorcontrib><creatorcontrib>Eliseev, Eugene A</creatorcontrib><creatorcontrib>Chu, Ying-Hao</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Kalinin, Sergei V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</description><subject>Carrier density</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductance</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Domain walls</subject><subject>Electric Conductivity</subject><subject>Electric fields</subject><subject>Electromagnetic Fields</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecular Substances - radiation effects</subject><subject>Materials Testing</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>Metals - chemistry</subject><subject>Metals - radiation effects</subject><subject>Molecular Conformation - radiation effects</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Physics</subject><subject>Polarization</subject><subject>Surface Properties - radiation effects</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Titanates</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90U1rGzEQBmAREvLh9pA_UEwgtD241ehrV8dg6raQpJf0LLTaEdkgS6m0e-i_j4wd-xKCDiPQw4x4h5BLoN-AMvgeA6OcC90dkXOQnC6U1ux4f2_FGbko5YlSqrmkp-SMMWihofqc6Icp2i7g_A5HG8Lg5ssU-8mNNjqcD3G-wpwTBnRjro_3NqY-re0Qywdy4m0o-HFXZ-Tv6sfD8tfi9s_P38ub24UVVIwL7lF5BNnxxrdc9FR6LevxPdMONSghG6daLzh4dK3ttFWqQyW73gFKwWfkats3lXEwxQ0jukeXYqxfMgDAQaqKPm_Rc07_JiyjWQ_FYQg2YpqK0RvEFGzkl3clNIpRyZTaTP66pS6nUjJ685yHtc3_DVCzCd7sg6_2067t1K2x38vXpCu43gFbnA0-14CHcnBSNKru6-CsK-YpTTnWcN8Y-AIrnJTP</recordid><startdate>20120111</startdate><enddate>20120111</enddate><creator>Maksymovych, Peter</creator><creator>Morozovska, Anna N</creator><creator>Yu, Pu</creator><creator>Eliseev, Eugene A</creator><creator>Chu, Ying-Hao</creator><creator>Ramesh, Ramamoorthy</creator><creator>Baddorf, Arthur P</creator><creator>Kalinin, Sergei V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120111</creationdate><title>Tunable Metallic Conductance in Ferroelectric Nanodomains</title><author>Maksymovych, Peter ; Morozovska, Anna N ; Yu, Pu ; Eliseev, Eugene A ; Chu, Ying-Hao ; Ramesh, Ramamoorthy ; Baddorf, Arthur P ; Kalinin, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carrier density</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductance</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Domain walls</topic><topic>Electric Conductivity</topic><topic>Electric fields</topic><topic>Electromagnetic Fields</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecular Substances - radiation effects</topic><topic>Materials Testing</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>Metals - chemistry</topic><topic>Metals - radiation effects</topic><topic>Molecular Conformation - radiation effects</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Physics</topic><topic>Polarization</topic><topic>Surface Properties - radiation effects</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, Peter</creatorcontrib><creatorcontrib>Morozovska, Anna N</creatorcontrib><creatorcontrib>Yu, Pu</creatorcontrib><creatorcontrib>Eliseev, Eugene A</creatorcontrib><creatorcontrib>Chu, Ying-Hao</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Kalinin, Sergei V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, Peter</au><au>Morozovska, Anna N</au><au>Yu, Pu</au><au>Eliseev, Eugene A</au><au>Chu, Ying-Hao</au><au>Ramesh, Ramamoorthy</au><au>Baddorf, Arthur P</au><au>Kalinin, Sergei V</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Metallic Conductance in Ferroelectric Nanodomains</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-01-11</date><risdate>2012</risdate><volume>12</volume><issue>1</issue><spage>209</spage><epage>213</epage><pages>209-213</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal–insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator–metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22181709</pmid><doi>10.1021/nl203349b</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-01, Vol.12 (1), p.209-213
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1113156
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Carrier density
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conductance
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Domain walls
Electric Conductivity
Electric fields
Electromagnetic Fields
Electron states
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Macromolecular Substances - chemistry
Macromolecular Substances - radiation effects
Materials Testing
Metal-insulator transitions and other electronic transitions
Metals - chemistry
Metals - radiation effects
Molecular Conformation - radiation effects
Nanostructure
Nanostructures - chemistry
Nanostructures - radiation effects
Nanostructures - ultrastructure
Physics
Polarization
Surface Properties - radiation effects
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Titanates
title Tunable Metallic Conductance in Ferroelectric Nanodomains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Metallic%20Conductance%20in%20Ferroelectric%20Nanodomains&rft.jtitle=Nano%20letters&rft.au=Maksymovych,%20Peter&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-01-11&rft.volume=12&rft.issue=1&rft.spage=209&rft.epage=213&rft.pages=209-213&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl203349b&rft_dat=%3Cproquest_osti_%3E1762052664%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a404t-3fe6fe15b37f834d05f95959fd29ce916457c68f431fec8ab9a66be65bdc1e543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762052664&rft_id=info:pmid/22181709&rfr_iscdi=true