Loading…
Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique
Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum...
Saved in:
Published in: | AIP advances 2011-12, Vol.1 (4), p.041403-041403-14 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3 |
container_end_page | 041403-14 |
container_issue | 4 |
container_start_page | 041403 |
container_title | AIP advances |
container_volume | 1 |
creator | Reinke, Charles M. Su, Mehmet F. Davis, Bruce L. Kim, Bongsang Hussein, Mahmoud I. Leseman, Zayd C. Olsson-III, Roy H. El-Kady, Ihab |
description | Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity. |
doi_str_mv | 10.1063/1.3675918 |
format | article |
fullrecord | <record><control><sourceid>scitation_AJDQP</sourceid><recordid>TN_cdi_osti_scitechconnect_1114945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f901610cc1e7457f9dd41f961a31f30b</doaj_id><sourcerecordid>adv</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3</originalsourceid><addsrcrecordid>eNqdkU1rHiEQgJfQQkOSQ_-B5NbCJs6q-3EsoU0CgV7Ss4xfeQ27-lbdwB77z-ubN7Q914sz8viM4zTNR6BXQHt2DVesH8QE40lz2oEYW9Z1_bt_4g_NRc7PtC4-AR35afPrcWfTgjPRMZhVF__iy0b2yRpfkxhIdCRgiFnjbMl-F0MMXhOdtlzqrTyjymTNPjwRJLtNJW_IjKV4bYnZAi5e57a6iw_rupDF6h1WQSalRsH_XO15897hnO3F237W_Pj29fHmrn34fnt_8-Wh1bwbSit6OtoBaccnxQwF1ErRcUAA5YygjFHVIahRcN5bJgZlrGM97UU3jR0wzc6a-6PXRHyW--QXTJuM6OXrQUxPElN992ylmyj0QLUGO3AxuMkYDm7qARm4Wqi6Lo-umIuXWftDN7XLYHWRAMAnLir06QjpFHNO1v0pClQe5iVBvs2rsp-P7MGFh4__P_glpr-g3BvHfgMhwaVZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique</title><source>AIP Open Access Journals</source><creator>Reinke, Charles M. ; Su, Mehmet F. ; Davis, Bruce L. ; Kim, Bongsang ; Hussein, Mahmoud I. ; Leseman, Zayd C. ; Olsson-III, Roy H. ; El-Kady, Ihab</creator><creatorcontrib>Reinke, Charles M. ; Su, Mehmet F. ; Davis, Bruce L. ; Kim, Bongsang ; Hussein, Mahmoud I. ; Leseman, Zayd C. ; Olsson-III, Roy H. ; El-Kady, Ihab</creatorcontrib><description>Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.3675918</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>AIP advances, 2011-12, Vol.1 (4), p.041403-041403-14</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3</citedby><cites>FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.3675918$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,885,27890,27924,27925,76408</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1063/1.3675918$$EView_record_in_American_Institute_of_Physics$$FView_record_in_$$GAmerican_Institute_of_Physics</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1114945$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinke, Charles M.</creatorcontrib><creatorcontrib>Su, Mehmet F.</creatorcontrib><creatorcontrib>Davis, Bruce L.</creatorcontrib><creatorcontrib>Kim, Bongsang</creatorcontrib><creatorcontrib>Hussein, Mahmoud I.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Olsson-III, Roy H.</creatorcontrib><creatorcontrib>El-Kady, Ihab</creatorcontrib><title>Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique</title><title>AIP advances</title><description>Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.</description><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkU1rHiEQgJfQQkOSQ_-B5NbCJs6q-3EsoU0CgV7Ss4xfeQ27-lbdwB77z-ubN7Q914sz8viM4zTNR6BXQHt2DVesH8QE40lz2oEYW9Z1_bt_4g_NRc7PtC4-AR35afPrcWfTgjPRMZhVF__iy0b2yRpfkxhIdCRgiFnjbMl-F0MMXhOdtlzqrTyjymTNPjwRJLtNJW_IjKV4bYnZAi5e57a6iw_rupDF6h1WQSalRsH_XO15897hnO3F237W_Pj29fHmrn34fnt_8-Wh1bwbSit6OtoBaccnxQwF1ErRcUAA5YygjFHVIahRcN5bJgZlrGM97UU3jR0wzc6a-6PXRHyW--QXTJuM6OXrQUxPElN992ylmyj0QLUGO3AxuMkYDm7qARm4Wqi6Lo-umIuXWftDN7XLYHWRAMAnLir06QjpFHNO1v0pClQe5iVBvs2rsp-P7MGFh4__P_glpr-g3BvHfgMhwaVZ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Reinke, Charles M.</creator><creator>Su, Mehmet F.</creator><creator>Davis, Bruce L.</creator><creator>Kim, Bongsang</creator><creator>Hussein, Mahmoud I.</creator><creator>Leseman, Zayd C.</creator><creator>Olsson-III, Roy H.</creator><creator>El-Kady, Ihab</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20111201</creationdate><title>Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique</title><author>Reinke, Charles M. ; Su, Mehmet F. ; Davis, Bruce L. ; Kim, Bongsang ; Hussein, Mahmoud I. ; Leseman, Zayd C. ; Olsson-III, Roy H. ; El-Kady, Ihab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinke, Charles M.</creatorcontrib><creatorcontrib>Su, Mehmet F.</creatorcontrib><creatorcontrib>Davis, Bruce L.</creatorcontrib><creatorcontrib>Kim, Bongsang</creatorcontrib><creatorcontrib>Hussein, Mahmoud I.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Olsson-III, Roy H.</creatorcontrib><creatorcontrib>El-Kady, Ihab</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reinke, Charles M.</au><au>Su, Mehmet F.</au><au>Davis, Bruce L.</au><au>Kim, Bongsang</au><au>Hussein, Mahmoud I.</au><au>Leseman, Zayd C.</au><au>Olsson-III, Roy H.</au><au>El-Kady, Ihab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique</atitle><jtitle>AIP advances</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>1</volume><issue>4</issue><spage>041403</spage><epage>041403-14</epage><pages>041403-041403-14</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3675918</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2011-12, Vol.1 (4), p.041403-041403-14 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_osti_scitechconnect_1114945 |
source | AIP Open Access Journals |
title | Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_AJDQP&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20prediction%20of%20nanoscale%20phononic%20crystal%20slabs%20using%20a%20hybrid%20lattice%20dynamics-continuum%20mechanics%20technique&rft.jtitle=AIP%20advances&rft.au=Reinke,%20Charles%20M.&rft.date=2011-12-01&rft.volume=1&rft.issue=4&rft.spage=041403&rft.epage=041403-14&rft.pages=041403-041403-14&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.3675918&rft_dat=%3Cscitation_AJDQP%3Eadv%3C/scitation_AJDQP%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-5608e7a0249b3d01acbb087a11bfd50330b2a1b85446e357bdef36065298213c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |