Loading…

Ultrafast observation of shocked states in a precompressed material

We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2010-07, Vol.108 (2), p.023511-023511-9
Main Authors: Armstrong, Michael R., Crowhurst, Jonathan C., Bastea, Sorin, Zaug, Joseph M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments. In particular, this method enables access to high density, relatively low temperature states of light materials, such as isentropically compressed states of giant planets. Further, since excitation by a shock wave is intrinsically ultrafast and this method has picoseconds time resolution, it has the potential to observe the collective dynamics of materials undergoing shock induced phase transitions and chemistry on ultrafast time scales. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3460801