Loading…

Thermal Conductivity in Nanocrystalline Ceria Thin Films

The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microst...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2014-02, Vol.97 (2), p.562-569
Main Authors: Khafizov, Marat, Park, In-Wook, Chernatynskiy, Aleksandr, He, Lingfeng, Lin, Jianliang, Moore, John J., Swank, David, Lillo, Thomas, Phillpot, Simon R., El-Azab, Anter, Hurley, David H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43
cites cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43
container_end_page 569
container_issue 2
container_start_page 562
container_title Journal of the American Ceramic Society
container_volume 97
creator Khafizov, Marat
Park, In-Wook
Chernatynskiy, Aleksandr
He, Lingfeng
Lin, Jianliang
Moore, John J.
Swank, David
Lillo, Thomas
Phillpot, Simon R.
El-Azab, Anter
Hurley, David H.
description The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.
doi_str_mv 10.1111/jace.12673
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1122113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218810801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmNw4RdUcEPqiJO2aY9T2QZoDAkNcYyyzNUyunYkHdB_T0aBI77Y1vueZT1CzoEOwNf1WmkcAEsEPyA9iGMIWQbJIelRSlkoUkaPyYlza79ClkY9ks5XaDeqDPK6Wu50Y95N0wamCmaqqrVtXaPK0lQY5GiNCuYrL41NuXGn5KhQpcOzn94nz-PRPL8Np4-Tu3w4DTVPEh5mi0UKAkUKiViKJOaQRZoveJTxAlEXCikyneECxbLIIpowprgWsWJ-KDDifXLR3a1dY6TTpkG90nVVoW4kAGMA3EOXHbS19dsOXSPX9c5W_i8JUZZCRGOaeOqqo7StnbNYyK01G2VbCVTu45P7-OR3fB6GDv4wJbb_kPJ-mI9-PWHnMa7Bzz-Psq_SyyKWL7OJfHgaR4zRGznhX4xKf1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498140506</pqid></control><display><type>article</type><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H.</creator><contributor>Clarke, D. ; Clarke, D.</contributor><creatorcontrib>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H. ; Idaho National Laboratory (INL) ; Clarke, D. ; Clarke, D.</creatorcontrib><description>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.12673</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>ceria ; Cerium oxides ; Conductivity ; GENERAL AND MISCELLANEOUS ; Grain boundaries ; Microscopy ; Nanocrystals ; Oxygen ; Spectrum analysis ; Thin films</subject><ispartof>Journal of the American Ceramic Society, 2014-02, Vol.97 (2), p.562-569</ispartof><rights>2013 The American Ceramic Society</rights><rights>Copyright Wiley Subscription Services, Inc. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</citedby><cites>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1122113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Clarke, D.</contributor><contributor>Clarke, D.</contributor><creatorcontrib>Khafizov, Marat</creatorcontrib><creatorcontrib>Park, In-Wook</creatorcontrib><creatorcontrib>Chernatynskiy, Aleksandr</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Lin, Jianliang</creatorcontrib><creatorcontrib>Moore, John J.</creatorcontrib><creatorcontrib>Swank, David</creatorcontrib><creatorcontrib>Lillo, Thomas</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</description><subject>ceria</subject><subject>Cerium oxides</subject><subject>Conductivity</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Grain boundaries</subject><subject>Microscopy</subject><subject>Nanocrystals</subject><subject>Oxygen</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmNw4RdUcEPqiJO2aY9T2QZoDAkNcYyyzNUyunYkHdB_T0aBI77Y1vueZT1CzoEOwNf1WmkcAEsEPyA9iGMIWQbJIelRSlkoUkaPyYlza79ClkY9ks5XaDeqDPK6Wu50Y95N0wamCmaqqrVtXaPK0lQY5GiNCuYrL41NuXGn5KhQpcOzn94nz-PRPL8Np4-Tu3w4DTVPEh5mi0UKAkUKiViKJOaQRZoveJTxAlEXCikyneECxbLIIpowprgWsWJ-KDDifXLR3a1dY6TTpkG90nVVoW4kAGMA3EOXHbS19dsOXSPX9c5W_i8JUZZCRGOaeOqqo7StnbNYyK01G2VbCVTu45P7-OR3fB6GDv4wJbb_kPJ-mI9-PWHnMa7Bzz-Psq_SyyKWL7OJfHgaR4zRGznhX4xKf1c</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Khafizov, Marat</creator><creator>Park, In-Wook</creator><creator>Chernatynskiy, Aleksandr</creator><creator>He, Lingfeng</creator><creator>Lin, Jianliang</creator><creator>Moore, John J.</creator><creator>Swank, David</creator><creator>Lillo, Thomas</creator><creator>Phillpot, Simon R.</creator><creator>El-Azab, Anter</creator><creator>Hurley, David H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>201402</creationdate><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><author>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ceria</topic><topic>Cerium oxides</topic><topic>Conductivity</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Grain boundaries</topic><topic>Microscopy</topic><topic>Nanocrystals</topic><topic>Oxygen</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khafizov, Marat</creatorcontrib><creatorcontrib>Park, In-Wook</creatorcontrib><creatorcontrib>Chernatynskiy, Aleksandr</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Lin, Jianliang</creatorcontrib><creatorcontrib>Moore, John J.</creatorcontrib><creatorcontrib>Swank, David</creatorcontrib><creatorcontrib>Lillo, Thomas</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khafizov, Marat</au><au>Park, In-Wook</au><au>Chernatynskiy, Aleksandr</au><au>He, Lingfeng</au><au>Lin, Jianliang</au><au>Moore, John J.</au><au>Swank, David</au><au>Lillo, Thomas</au><au>Phillpot, Simon R.</au><au>El-Azab, Anter</au><au>Hurley, David H.</au><au>Clarke, D.</au><au>Clarke, D.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity in Nanocrystalline Ceria Thin Films</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2014-02</date><risdate>2014</risdate><volume>97</volume><issue>2</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.12673</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2014-02, Vol.97 (2), p.562-569
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_1122113
source Wiley-Blackwell Read & Publish Collection
subjects ceria
Cerium oxides
Conductivity
GENERAL AND MISCELLANEOUS
Grain boundaries
Microscopy
Nanocrystals
Oxygen
Spectrum analysis
Thin films
title Thermal Conductivity in Nanocrystalline Ceria Thin Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20in%20Nanocrystalline%20Ceria%20Thin%20Films&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Khafizov,%20Marat&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2014-02&rft.volume=97&rft.issue=2&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.12673&rft_dat=%3Cproquest_osti_%3E3218810801%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1498140506&rft_id=info:pmid/&rfr_iscdi=true