Loading…
Thermal Conductivity in Nanocrystalline Ceria Thin Films
The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microst...
Saved in:
Published in: | Journal of the American Ceramic Society 2014-02, Vol.97 (2), p.562-569 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43 |
container_end_page | 569 |
container_issue | 2 |
container_start_page | 562 |
container_title | Journal of the American Ceramic Society |
container_volume | 97 |
creator | Khafizov, Marat Park, In-Wook Chernatynskiy, Aleksandr He, Lingfeng Lin, Jianliang Moore, John J. Swank, David Lillo, Thomas Phillpot, Simon R. El-Azab, Anter Hurley, David H. |
description | The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries. |
doi_str_mv | 10.1111/jace.12673 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1122113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218810801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmNw4RdUcEPqiJO2aY9T2QZoDAkNcYyyzNUyunYkHdB_T0aBI77Y1vueZT1CzoEOwNf1WmkcAEsEPyA9iGMIWQbJIelRSlkoUkaPyYlza79ClkY9ks5XaDeqDPK6Wu50Y95N0wamCmaqqrVtXaPK0lQY5GiNCuYrL41NuXGn5KhQpcOzn94nz-PRPL8Np4-Tu3w4DTVPEh5mi0UKAkUKiViKJOaQRZoveJTxAlEXCikyneECxbLIIpowprgWsWJ-KDDifXLR3a1dY6TTpkG90nVVoW4kAGMA3EOXHbS19dsOXSPX9c5W_i8JUZZCRGOaeOqqo7StnbNYyK01G2VbCVTu45P7-OR3fB6GDv4wJbb_kPJ-mI9-PWHnMa7Bzz-Psq_SyyKWL7OJfHgaR4zRGznhX4xKf1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498140506</pqid></control><display><type>article</type><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H.</creator><contributor>Clarke, D. ; Clarke, D.</contributor><creatorcontrib>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H. ; Idaho National Laboratory (INL) ; Clarke, D. ; Clarke, D.</creatorcontrib><description>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.12673</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>ceria ; Cerium oxides ; Conductivity ; GENERAL AND MISCELLANEOUS ; Grain boundaries ; Microscopy ; Nanocrystals ; Oxygen ; Spectrum analysis ; Thin films</subject><ispartof>Journal of the American Ceramic Society, 2014-02, Vol.97 (2), p.562-569</ispartof><rights>2013 The American Ceramic Society</rights><rights>Copyright Wiley Subscription Services, Inc. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</citedby><cites>FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1122113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Clarke, D.</contributor><contributor>Clarke, D.</contributor><creatorcontrib>Khafizov, Marat</creatorcontrib><creatorcontrib>Park, In-Wook</creatorcontrib><creatorcontrib>Chernatynskiy, Aleksandr</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Lin, Jianliang</creatorcontrib><creatorcontrib>Moore, John J.</creatorcontrib><creatorcontrib>Swank, David</creatorcontrib><creatorcontrib>Lillo, Thomas</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</description><subject>ceria</subject><subject>Cerium oxides</subject><subject>Conductivity</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Grain boundaries</subject><subject>Microscopy</subject><subject>Nanocrystals</subject><subject>Oxygen</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmNw4RdUcEPqiJO2aY9T2QZoDAkNcYyyzNUyunYkHdB_T0aBI77Y1vueZT1CzoEOwNf1WmkcAEsEPyA9iGMIWQbJIelRSlkoUkaPyYlza79ClkY9ks5XaDeqDPK6Wu50Y95N0wamCmaqqrVtXaPK0lQY5GiNCuYrL41NuXGn5KhQpcOzn94nz-PRPL8Np4-Tu3w4DTVPEh5mi0UKAkUKiViKJOaQRZoveJTxAlEXCikyneECxbLIIpowprgWsWJ-KDDifXLR3a1dY6TTpkG90nVVoW4kAGMA3EOXHbS19dsOXSPX9c5W_i8JUZZCRGOaeOqqo7StnbNYyK01G2VbCVTu45P7-OR3fB6GDv4wJbb_kPJ-mI9-PWHnMa7Bzz-Psq_SyyKWL7OJfHgaR4zRGznhX4xKf1c</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Khafizov, Marat</creator><creator>Park, In-Wook</creator><creator>Chernatynskiy, Aleksandr</creator><creator>He, Lingfeng</creator><creator>Lin, Jianliang</creator><creator>Moore, John J.</creator><creator>Swank, David</creator><creator>Lillo, Thomas</creator><creator>Phillpot, Simon R.</creator><creator>El-Azab, Anter</creator><creator>Hurley, David H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>201402</creationdate><title>Thermal Conductivity in Nanocrystalline Ceria Thin Films</title><author>Khafizov, Marat ; Park, In-Wook ; Chernatynskiy, Aleksandr ; He, Lingfeng ; Lin, Jianliang ; Moore, John J. ; Swank, David ; Lillo, Thomas ; Phillpot, Simon R. ; El-Azab, Anter ; Hurley, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ceria</topic><topic>Cerium oxides</topic><topic>Conductivity</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Grain boundaries</topic><topic>Microscopy</topic><topic>Nanocrystals</topic><topic>Oxygen</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khafizov, Marat</creatorcontrib><creatorcontrib>Park, In-Wook</creatorcontrib><creatorcontrib>Chernatynskiy, Aleksandr</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Lin, Jianliang</creatorcontrib><creatorcontrib>Moore, John J.</creatorcontrib><creatorcontrib>Swank, David</creatorcontrib><creatorcontrib>Lillo, Thomas</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khafizov, Marat</au><au>Park, In-Wook</au><au>Chernatynskiy, Aleksandr</au><au>He, Lingfeng</au><au>Lin, Jianliang</au><au>Moore, John J.</au><au>Swank, David</au><au>Lillo, Thomas</au><au>Phillpot, Simon R.</au><au>El-Azab, Anter</au><au>Hurley, David H.</au><au>Clarke, D.</au><au>Clarke, D.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity in Nanocrystalline Ceria Thin Films</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2014-02</date><risdate>2014</risdate><volume>97</volume><issue>2</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser‐based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X‐ray diffraction, scanning and transmission electron microscopy, X‐ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.12673</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2014-02, Vol.97 (2), p.562-569 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_1122113 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | ceria Cerium oxides Conductivity GENERAL AND MISCELLANEOUS Grain boundaries Microscopy Nanocrystals Oxygen Spectrum analysis Thin films |
title | Thermal Conductivity in Nanocrystalline Ceria Thin Films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20in%20Nanocrystalline%20Ceria%20Thin%20Films&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Khafizov,%20Marat&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2014-02&rft.volume=97&rft.issue=2&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.12673&rft_dat=%3Cproquest_osti_%3E3218810801%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3663-9bb817e78167d7653194c3b3493feecfae0e2c9ebe7df940622a3c75a222afe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1498140506&rft_id=info:pmid/&rfr_iscdi=true |