Loading…
Complementarity of dark matter searches in the phenomenological MSSM
As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multipronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in...
Saved in:
Published in: | Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2015-03, Vol.91 (5), Article 055011 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multipronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in the 19-parameter phenomenological MSSM which provides a general framework for complementarity studies of neutralino dark matter. We summarize the sensitivity of dark matter searches at the 7 and 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP, LZ and XENON. The strengths and weaknesses of each of these techniques are examined and contrasted and their interdependent roles in covering the model parameter space are discussed in detail. We find that these approaches explore orthogonal territory and that advances in each are necessary to cover the supersymmetric weakly interacting massive particle parameter space. We also find that different experiments have widely varying sensitivities to the various dark matter annihilation mechanisms, some of which would be completely excluded by null results from these experiments. |
---|---|
ISSN: | 1550-7998 1550-2368 |
DOI: | 10.1103/PhysRevD.91.055011 |