Loading…
Impurity production and acceleration in CTIX
The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probe...
Saved in:
Published in: | Journal of nuclear materials 2009-06, Vol.390, p.223-226 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3 |
container_end_page | 226 |
container_issue | |
container_start_page | 223 |
container_title | Journal of nuclear materials |
container_volume | 390 |
creator | Buchenauer, D. Clift, W.M. Klauser, R. Horton, R.D. Howard, S.J. Brockington, S.J. Evans, R.W. Hwang, D.Q. |
description | The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200
Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT. |
doi_str_mv | 10.1016/j.jnucmat.2009.01.058 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1143414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509001019</els_id><sourcerecordid>34485569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QSiCntx1kk12NyeR4keh4KWCtxCzs5iym61JVui_N7XFq4cwEJ6Zeech5JJCToGWd-t87UbT65gzAJkDzUHUR2RC66rIeM3gmEwAGMsKSsUpOQthDQBCgpiQ20W_Gb2N29nGD81ooh3cTLtmpo3BDr3-_bBuNl8t3s_JSau7gBeHOiVvT4-r-Uu2fH1ezB-WmeGcx0xjyYBXFZcMWiE_pG64aUsDlRSs1Ig1FnUFjTCa86aqW1YkLp3CmpaKDyym5Go_dwjRqmBsRPNpBufQREUpL3h6U3Kzh1LwrxFDVL0NKXOnHQ5jUAXntRClTKDYg8YPIXhs1cbbXvutoqB2AtVaHQSqnUAFVCWBqe_6sEAHo7vWa2ds-GtmtJKyECJx93sOk5Jvi36XGJ3Bxvpd4Gaw_2z6AaOLhzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34485569</pqid></control><display><type>article</type><title>Impurity production and acceleration in CTIX</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q.</creator><creatorcontrib>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200
Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.01.058</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Journal of nuclear materials, 2009-06, Vol.390, p.223-226</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</citedby><cites>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21799355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1143414$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchenauer, D.</creatorcontrib><creatorcontrib>Clift, W.M.</creatorcontrib><creatorcontrib>Klauser, R.</creatorcontrib><creatorcontrib>Horton, R.D.</creatorcontrib><creatorcontrib>Howard, S.J.</creatorcontrib><creatorcontrib>Brockington, S.J.</creatorcontrib><creatorcontrib>Evans, R.W.</creatorcontrib><creatorcontrib>Hwang, D.Q.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Impurity production and acceleration in CTIX</title><title>Journal of nuclear materials</title><description>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200
Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QSiCntx1kk12NyeR4keh4KWCtxCzs5iym61JVui_N7XFq4cwEJ6Zeech5JJCToGWd-t87UbT65gzAJkDzUHUR2RC66rIeM3gmEwAGMsKSsUpOQthDQBCgpiQ20W_Gb2N29nGD81ooh3cTLtmpo3BDr3-_bBuNl8t3s_JSau7gBeHOiVvT4-r-Uu2fH1ezB-WmeGcx0xjyYBXFZcMWiE_pG64aUsDlRSs1Ig1FnUFjTCa86aqW1YkLp3CmpaKDyym5Go_dwjRqmBsRPNpBufQREUpL3h6U3Kzh1LwrxFDVL0NKXOnHQ5jUAXntRClTKDYg8YPIXhs1cbbXvutoqB2AtVaHQSqnUAFVCWBqe_6sEAHo7vWa2ds-GtmtJKyECJx93sOk5Jvi36XGJ3Bxvpd4Gaw_2z6AaOLhzg</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Buchenauer, D.</creator><creator>Clift, W.M.</creator><creator>Klauser, R.</creator><creator>Horton, R.D.</creator><creator>Howard, S.J.</creator><creator>Brockington, S.J.</creator><creator>Evans, R.W.</creator><creator>Hwang, D.Q.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20090615</creationdate><title>Impurity production and acceleration in CTIX</title><author>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchenauer, D.</creatorcontrib><creatorcontrib>Clift, W.M.</creatorcontrib><creatorcontrib>Klauser, R.</creatorcontrib><creatorcontrib>Horton, R.D.</creatorcontrib><creatorcontrib>Howard, S.J.</creatorcontrib><creatorcontrib>Brockington, S.J.</creatorcontrib><creatorcontrib>Evans, R.W.</creatorcontrib><creatorcontrib>Hwang, D.Q.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchenauer, D.</au><au>Clift, W.M.</au><au>Klauser, R.</au><au>Horton, R.D.</au><au>Howard, S.J.</au><au>Brockington, S.J.</au><au>Evans, R.W.</au><au>Hwang, D.Q.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity production and acceleration in CTIX</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>390</volume><spage>223</spage><epage>226</epage><pages>223-226</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200
Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.01.058</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2009-06, Vol.390, p.223-226 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1143414 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Nuclear fuels |
title | Impurity production and acceleration in CTIX |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity%20production%20and%20acceleration%20in%20CTIX&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Buchenauer,%20D.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2009-06-15&rft.volume=390&rft.spage=223&rft.epage=226&rft.pages=223-226&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.01.058&rft_dat=%3Cproquest_osti_%3E34485569%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34485569&rft_id=info:pmid/&rfr_iscdi=true |