Loading…

Impurity production and acceleration in CTIX

The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2009-06, Vol.390, p.223-226
Main Authors: Buchenauer, D., Clift, W.M., Klauser, R., Horton, R.D., Howard, S.J., Brockington, S.J., Evans, R.W., Hwang, D.Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3
cites cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3
container_end_page 226
container_issue
container_start_page 223
container_title Journal of nuclear materials
container_volume 390
creator Buchenauer, D.
Clift, W.M.
Klauser, R.
Horton, R.D.
Howard, S.J.
Brockington, S.J.
Evans, R.W.
Hwang, D.Q.
description The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.
doi_str_mv 10.1016/j.jnucmat.2009.01.058
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1143414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509001019</els_id><sourcerecordid>34485569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QSiCntx1kk12NyeR4keh4KWCtxCzs5iym61JVui_N7XFq4cwEJ6Zeech5JJCToGWd-t87UbT65gzAJkDzUHUR2RC66rIeM3gmEwAGMsKSsUpOQthDQBCgpiQ20W_Gb2N29nGD81ooh3cTLtmpo3BDr3-_bBuNl8t3s_JSau7gBeHOiVvT4-r-Uu2fH1ezB-WmeGcx0xjyYBXFZcMWiE_pG64aUsDlRSs1Ig1FnUFjTCa86aqW1YkLp3CmpaKDyym5Go_dwjRqmBsRPNpBufQREUpL3h6U3Kzh1LwrxFDVL0NKXOnHQ5jUAXntRClTKDYg8YPIXhs1cbbXvutoqB2AtVaHQSqnUAFVCWBqe_6sEAHo7vWa2ds-GtmtJKyECJx93sOk5Jvi36XGJ3Bxvpd4Gaw_2z6AaOLhzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34485569</pqid></control><display><type>article</type><title>Impurity production and acceleration in CTIX</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q.</creator><creatorcontrib>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.01.058</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Journal of nuclear materials, 2009-06, Vol.390, p.223-226</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</citedby><cites>FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21799355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1143414$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchenauer, D.</creatorcontrib><creatorcontrib>Clift, W.M.</creatorcontrib><creatorcontrib>Klauser, R.</creatorcontrib><creatorcontrib>Horton, R.D.</creatorcontrib><creatorcontrib>Howard, S.J.</creatorcontrib><creatorcontrib>Brockington, S.J.</creatorcontrib><creatorcontrib>Evans, R.W.</creatorcontrib><creatorcontrib>Hwang, D.Q.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Impurity production and acceleration in CTIX</title><title>Journal of nuclear materials</title><description>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QSiCntx1kk12NyeR4keh4KWCtxCzs5iym61JVui_N7XFq4cwEJ6Zeech5JJCToGWd-t87UbT65gzAJkDzUHUR2RC66rIeM3gmEwAGMsKSsUpOQthDQBCgpiQ20W_Gb2N29nGD81ooh3cTLtmpo3BDr3-_bBuNl8t3s_JSau7gBeHOiVvT4-r-Uu2fH1ezB-WmeGcx0xjyYBXFZcMWiE_pG64aUsDlRSs1Ig1FnUFjTCa86aqW1YkLp3CmpaKDyym5Go_dwjRqmBsRPNpBufQREUpL3h6U3Kzh1LwrxFDVL0NKXOnHQ5jUAXntRClTKDYg8YPIXhs1cbbXvutoqB2AtVaHQSqnUAFVCWBqe_6sEAHo7vWa2ds-GtmtJKyECJx93sOk5Jvi36XGJ3Bxvpd4Gaw_2z6AaOLhzg</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Buchenauer, D.</creator><creator>Clift, W.M.</creator><creator>Klauser, R.</creator><creator>Horton, R.D.</creator><creator>Howard, S.J.</creator><creator>Brockington, S.J.</creator><creator>Evans, R.W.</creator><creator>Hwang, D.Q.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20090615</creationdate><title>Impurity production and acceleration in CTIX</title><author>Buchenauer, D. ; Clift, W.M. ; Klauser, R. ; Horton, R.D. ; Howard, S.J. ; Brockington, S.J. ; Evans, R.W. ; Hwang, D.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchenauer, D.</creatorcontrib><creatorcontrib>Clift, W.M.</creatorcontrib><creatorcontrib>Klauser, R.</creatorcontrib><creatorcontrib>Horton, R.D.</creatorcontrib><creatorcontrib>Howard, S.J.</creatorcontrib><creatorcontrib>Brockington, S.J.</creatorcontrib><creatorcontrib>Evans, R.W.</creatorcontrib><creatorcontrib>Hwang, D.Q.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchenauer, D.</au><au>Clift, W.M.</au><au>Klauser, R.</au><au>Horton, R.D.</au><au>Howard, S.J.</au><au>Brockington, S.J.</au><au>Evans, R.W.</au><au>Hwang, D.Q.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity production and acceleration in CTIX</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>390</volume><spage>223</spage><epage>226</epage><pages>223-226</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT’s exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10–20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.01.058</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2009-06, Vol.390, p.223-226
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1143414
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
title Impurity production and acceleration in CTIX
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity%20production%20and%20acceleration%20in%20CTIX&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Buchenauer,%20D.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2009-06-15&rft.volume=390&rft.spage=223&rft.epage=226&rft.pages=223-226&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.01.058&rft_dat=%3Cproquest_osti_%3E34485569%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-ae6204774920f59b9ad4cf6c079526aee8e3870d5ca44d78f230f51012df15be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34485569&rft_id=info:pmid/&rfr_iscdi=true