Loading…
Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces
We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (µFACS) uses an infrared laser to laterally deflect cells into a co...
Saved in:
Published in: | Analytical chemistry (Washington) 2008-08, Vol.80 (16), p.6365-6372 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353 |
---|---|
cites | cdi_FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353 |
container_end_page | 6372 |
container_issue | 16 |
container_start_page | 6365 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Perroud, Thomas D Kaiser, Julia N Sy, Jay C Lane, Todd W Branda, Catherine S Singh, Anup K Patel, Kamlesh D |
description | We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (µFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures ( |
doi_str_mv | 10.1021/ac8007779 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1145788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1545478101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EomnhwB9AKySQOCzM2Gt79wgRoZVaNSitKnGxHMduXTa7wbMrlX-Po0TJgQMnS-Nv3sybx9gbhE8IHD9bVwNorZtnbIKSQ6nqmj9nEwAQJdcAJ-yU6BEAEVC9ZCdYSwRR4YS5q-hSH9oxrqIrv1ryq2Lq27ZY9GmI3X3Rh2KWbOci5aothrG1yXcUqbjogndD5q9sltg82HtPxS1tm643Q3S2LWZ9cp5esRfBtuRf798zdjv7djM9Ly-vv19Mv1yWVgo-lBK8QhV8w0E5u3S6FrzJFYchgJQYZCWXNWqoFDgrVFgFy4PntdWglkKKM_Zup9vTEA25OHj34Pquy2saxErqus7Qhx20Sf3v0dNg1pHc1lvn-5GMairBK4n_BbFRkleNPo49gI_9mLrs1HDUDYKqVIY-7qB8KqLkg9mkuLbpj0Ew2xDNIcTMvt0Ljsu1Xx3JfWoZeL8HLOUzh10-By7fL88UVebKHRdp8E-Hf5t-GaWFluZmvjA_fp7P79Ribu6OutbR0cS_C_4FI4q81Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217910646</pqid></control><display><type>article</type><title>Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Perroud, Thomas D ; Kaiser, Julia N ; Sy, Jay C ; Lane, Todd W ; Branda, Catherine S ; Singh, Anup K ; Patel, Kamlesh D</creator><creatorcontrib>Perroud, Thomas D ; Kaiser, Julia N ; Sy, Jay C ; Lane, Todd W ; Branda, Catherine S ; Singh, Anup K ; Patel, Kamlesh D ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (µFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-κB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10 738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac8007779</identifier><identifier>PMID: 18510341</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Animals ; Bacteria ; Cell Nucleus - metabolism ; Cell Proliferation ; Cell Separation - methods ; Cell Survival ; Cells ; Cells, Cultured ; Chemistry ; Diagnostic Imaging ; Exact sciences and technology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Flow Cytometry ; Fluorescence ; Fluorescent Dyes ; Francisella tularensis ; Francisella tularensis - immunology ; Francisella tularensis - metabolism ; Francisella tularensis - radiation effects ; Green Fluorescent Proteins ; Infrared radiation ; Lipopolysaccharides - pharmacology ; Macrophage Activation - radiation effects ; Macrophages - immunology ; Macrophages - microbiology ; Macrophages - radiation effects ; Mice ; Microfluidics - methods ; NF-kappa B - metabolism ; Optical Tweezers ; Optics ; Phosphorylation - radiation effects ; Protein Transport ; Signal Transduction ; Spectrometric and optical methods ; Tularemia - immunology</subject><ispartof>Analytical chemistry (Washington), 2008-08, Vol.80 (16), p.6365-6372</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353</citedby><cites>FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27906,27907</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20606434$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18510341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1145788$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perroud, Thomas D</creatorcontrib><creatorcontrib>Kaiser, Julia N</creatorcontrib><creatorcontrib>Sy, Jay C</creatorcontrib><creatorcontrib>Lane, Todd W</creatorcontrib><creatorcontrib>Branda, Catherine S</creatorcontrib><creatorcontrib>Singh, Anup K</creatorcontrib><creatorcontrib>Patel, Kamlesh D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (µFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-κB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10 738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery.</description><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Proliferation</subject><subject>Cell Separation - methods</subject><subject>Cell Survival</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Chemistry</subject><subject>Diagnostic Imaging</subject><subject>Exact sciences and technology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Flow Cytometry</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Francisella tularensis</subject><subject>Francisella tularensis - immunology</subject><subject>Francisella tularensis - metabolism</subject><subject>Francisella tularensis - radiation effects</subject><subject>Green Fluorescent Proteins</subject><subject>Infrared radiation</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophage Activation - radiation effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Macrophages - radiation effects</subject><subject>Mice</subject><subject>Microfluidics - methods</subject><subject>NF-kappa B - metabolism</subject><subject>Optical Tweezers</subject><subject>Optics</subject><subject>Phosphorylation - radiation effects</subject><subject>Protein Transport</subject><subject>Signal Transduction</subject><subject>Spectrometric and optical methods</subject><subject>Tularemia - immunology</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EomnhwB9AKySQOCzM2Gt79wgRoZVaNSitKnGxHMduXTa7wbMrlX-Po0TJgQMnS-Nv3sybx9gbhE8IHD9bVwNorZtnbIKSQ6nqmj9nEwAQJdcAJ-yU6BEAEVC9ZCdYSwRR4YS5q-hSH9oxrqIrv1ryq2Lq27ZY9GmI3X3Rh2KWbOci5aothrG1yXcUqbjogndD5q9sltg82HtPxS1tm643Q3S2LWZ9cp5esRfBtuRf798zdjv7djM9Ly-vv19Mv1yWVgo-lBK8QhV8w0E5u3S6FrzJFYchgJQYZCWXNWqoFDgrVFgFy4PntdWglkKKM_Zup9vTEA25OHj34Pquy2saxErqus7Qhx20Sf3v0dNg1pHc1lvn-5GMairBK4n_BbFRkleNPo49gI_9mLrs1HDUDYKqVIY-7qB8KqLkg9mkuLbpj0Ew2xDNIcTMvt0Ljsu1Xx3JfWoZeL8HLOUzh10-By7fL88UVebKHRdp8E-Hf5t-GaWFluZmvjA_fp7P79Ribu6OutbR0cS_C_4FI4q81Q</recordid><startdate>20080815</startdate><enddate>20080815</enddate><creator>Perroud, Thomas D</creator><creator>Kaiser, Julia N</creator><creator>Sy, Jay C</creator><creator>Lane, Todd W</creator><creator>Branda, Catherine S</creator><creator>Singh, Anup K</creator><creator>Patel, Kamlesh D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20080815</creationdate><title>Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces</title><author>Perroud, Thomas D ; Kaiser, Julia N ; Sy, Jay C ; Lane, Todd W ; Branda, Catherine S ; Singh, Anup K ; Patel, Kamlesh D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Proliferation</topic><topic>Cell Separation - methods</topic><topic>Cell Survival</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Chemistry</topic><topic>Diagnostic Imaging</topic><topic>Exact sciences and technology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Flow Cytometry</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Francisella tularensis</topic><topic>Francisella tularensis - immunology</topic><topic>Francisella tularensis - metabolism</topic><topic>Francisella tularensis - radiation effects</topic><topic>Green Fluorescent Proteins</topic><topic>Infrared radiation</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophage Activation - radiation effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Macrophages - radiation effects</topic><topic>Mice</topic><topic>Microfluidics - methods</topic><topic>NF-kappa B - metabolism</topic><topic>Optical Tweezers</topic><topic>Optics</topic><topic>Phosphorylation - radiation effects</topic><topic>Protein Transport</topic><topic>Signal Transduction</topic><topic>Spectrometric and optical methods</topic><topic>Tularemia - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perroud, Thomas D</creatorcontrib><creatorcontrib>Kaiser, Julia N</creatorcontrib><creatorcontrib>Sy, Jay C</creatorcontrib><creatorcontrib>Lane, Todd W</creatorcontrib><creatorcontrib>Branda, Catherine S</creatorcontrib><creatorcontrib>Singh, Anup K</creatorcontrib><creatorcontrib>Patel, Kamlesh D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perroud, Thomas D</au><au>Kaiser, Julia N</au><au>Sy, Jay C</au><au>Lane, Todd W</au><au>Branda, Catherine S</au><au>Singh, Anup K</au><au>Patel, Kamlesh D</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-08-15</date><risdate>2008</risdate><volume>80</volume><issue>16</issue><spage>6365</spage><epage>6372</epage><pages>6365-6372</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (µFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-κB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10 738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18510341</pmid><doi>10.1021/ac8007779</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-08, Vol.80 (16), p.6365-6372 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_osti_scitechconnect_1145788 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Animals Bacteria Cell Nucleus - metabolism Cell Proliferation Cell Separation - methods Cell Survival Cells Cells, Cultured Chemistry Diagnostic Imaging Exact sciences and technology Extracellular Signal-Regulated MAP Kinases - metabolism Flow Cytometry Fluorescence Fluorescent Dyes Francisella tularensis Francisella tularensis - immunology Francisella tularensis - metabolism Francisella tularensis - radiation effects Green Fluorescent Proteins Infrared radiation Lipopolysaccharides - pharmacology Macrophage Activation - radiation effects Macrophages - immunology Macrophages - microbiology Macrophages - radiation effects Mice Microfluidics - methods NF-kappa B - metabolism Optical Tweezers Optics Phosphorylation - radiation effects Protein Transport Signal Transduction Spectrometric and optical methods Tularemia - immunology |
title | Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic-Based%20Cell%20Sorting%20of%20Francisella%20tularensis%20Infected%20Macrophages%20Using%20Optical%20Forces&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Perroud,%20Thomas%20D&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2008-08-15&rft.volume=80&rft.issue=16&rft.spage=6365&rft.epage=6372&rft.pages=6365-6372&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac8007779&rft_dat=%3Cproquest_osti_%3E1545478101%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a532t-50e616fe9206cabc78329616c1ff0551f545b8170460ca36fdfa2fe28a706b353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217910646&rft_id=info:pmid/18510341&rfr_iscdi=true |