Loading…

Controlled incorporation of deuterium into bacterial cellulose

Isotopic enrichment has been widely used for investigating the structural and dynamic properties of biomacromolecules to provide information that cannot be carried out with molecules composed of natural abundance isotopes. A media formulation for controlled incorporation of deuterium in bacterial ce...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2014-04, Vol.21 (2), p.927-936
Main Authors: He, Junhong, Pingali, Sai Venkatesh, Chundawat, Shishir P. S, Pack, Angela, Jones, A. Daniel, Langan, Paul, Davison, Brian H, Urban, Volker, Evans, Barbara, O’Neill, Hugh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313
cites cdi_FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313
container_end_page 936
container_issue 2
container_start_page 927
container_title Cellulose (London)
container_volume 21
creator He, Junhong
Pingali, Sai Venkatesh
Chundawat, Shishir P. S
Pack, Angela
Jones, A. Daniel
Langan, Paul
Davison, Brian H
Urban, Volker
Evans, Barbara
O’Neill, Hugh
description Isotopic enrichment has been widely used for investigating the structural and dynamic properties of biomacromolecules to provide information that cannot be carried out with molecules composed of natural abundance isotopes. A media formulation for controlled incorporation of deuterium in bacterial cellulose synthesized by Gluconacetobacter xylinus subsp. sucrofermentans is reported. The purified cellulose was characterized using Fourier Transform Infra-Red spectrophotometry and mass spectrometry which revealed that the level of deuterium incorporation in the perdeuterated cellulose was greater than 90 %. Small-angle neutron scattering analysis demonstrated that the overall structure of the cellulose was unaffected by the substitution of deuterium for hydrogen. In addition, by varying the amount of D-glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. A large disk model was used to fit the curves of bacterial cellulose grown using 0 and 100 % D-Glycerol yielding a lower bound to the disk radii, R ₘᵢₙ = 1,132 ± 6 and 1,154 ± 3 Å and disk thickness, T = 128 ± 1 and 83 ± 1 Å for the protiated and deuterated forms of the bacterial cellulose, respectively. This agrees well with the scanning electron microscopy analysis which revealed stacked sheets in the cellulose pellicles. Controlled incorporation of deuterium into cellulose will enable new types of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose and its interactions with proteins and other (bio) polymers.
doi_str_mv 10.1007/s10570-013-0067-4
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1152733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259912208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVoINskD5BTTHvpxcloJEv2pVCWNi0EckgCuQmtdrT14rW2knzI20fGhUAPPQ3DfP8w8zF2xeGGA-jbxKHRUAMXNYDStTxhK95orNsWXz6wFXSqqwFFd8Y-prQHgE4jX7Gv6zDmGIaBtlU_uhCPIdrch7EKvtrSlCn206GMcqg21s2tHSpHwzANIdEFO_V2SHT5t56z5x_fn9Y_6_uHu1_rb_e1kwC5VkKgVB43ym0telLOSUnW664VfouSvHBKKY5CtXLjFXmJbatF2wApElycs0_L3pByb5LrM7nfLowjuWw4b1ALUaAvC3SM4c9EKZtDn-ZT7UhhSqZgIBRXoi3o53_QfZjiWF4wiE3XcUSYKb5QLoaUInlzjP3BxlfDwczazaLdFO1m1m5kyeCSSYUddxTfN_8vdL2EvA3G7mKfzPMjAi_yQGoslt4AAqeMzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259912208</pqid></control><display><type>article</type><title>Controlled incorporation of deuterium into bacterial cellulose</title><source>Springer Nature</source><creator>He, Junhong ; Pingali, Sai Venkatesh ; Chundawat, Shishir P. S ; Pack, Angela ; Jones, A. Daniel ; Langan, Paul ; Davison, Brian H ; Urban, Volker ; Evans, Barbara ; O’Neill, Hugh</creator><creatorcontrib>He, Junhong ; Pingali, Sai Venkatesh ; Chundawat, Shishir P. S ; Pack, Angela ; Jones, A. Daniel ; Langan, Paul ; Davison, Brian H ; Urban, Volker ; Evans, Barbara ; O’Neill, Hugh ; Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><description>Isotopic enrichment has been widely used for investigating the structural and dynamic properties of biomacromolecules to provide information that cannot be carried out with molecules composed of natural abundance isotopes. A media formulation for controlled incorporation of deuterium in bacterial cellulose synthesized by Gluconacetobacter xylinus subsp. sucrofermentans is reported. The purified cellulose was characterized using Fourier Transform Infra-Red spectrophotometry and mass spectrometry which revealed that the level of deuterium incorporation in the perdeuterated cellulose was greater than 90 %. Small-angle neutron scattering analysis demonstrated that the overall structure of the cellulose was unaffected by the substitution of deuterium for hydrogen. In addition, by varying the amount of D-glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. A large disk model was used to fit the curves of bacterial cellulose grown using 0 and 100 % D-Glycerol yielding a lower bound to the disk radii, R ₘᵢₙ = 1,132 ± 6 and 1,154 ± 3 Å and disk thickness, T = 128 ± 1 and 83 ± 1 Å for the protiated and deuterated forms of the bacterial cellulose, respectively. This agrees well with the scanning electron microscopy analysis which revealed stacked sheets in the cellulose pellicles. Controlled incorporation of deuterium into cellulose will enable new types of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose and its interactions with proteins and other (bio) polymers.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-013-0067-4</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Bacteria ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Deuteration ; Deuterium ; Fourier transforms ; Glass ; Gluconacetobacter xylinus ; Glycerol ; Incorporation ; isotopes ; Isotopic enrichment ; Lower bounds ; Mass spectrometry ; Natural Materials ; Neutron scattering ; Neutrons ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; polymers ; proteins ; Scanning electron microscopy ; Spectrophotometry ; Sustainable Development</subject><ispartof>Cellulose (London), 2014-04, Vol.21 (2), p.927-936</ispartof><rights>Springer Science+Business Media Dordrecht (outside the USA) 2013</rights><rights>Cellulose is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313</citedby><cites>FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1152733$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Junhong</creatorcontrib><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Chundawat, Shishir P. S</creatorcontrib><creatorcontrib>Pack, Angela</creatorcontrib><creatorcontrib>Jones, A. Daniel</creatorcontrib><creatorcontrib>Langan, Paul</creatorcontrib><creatorcontrib>Davison, Brian H</creatorcontrib><creatorcontrib>Urban, Volker</creatorcontrib><creatorcontrib>Evans, Barbara</creatorcontrib><creatorcontrib>O’Neill, Hugh</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><title>Controlled incorporation of deuterium into bacterial cellulose</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Isotopic enrichment has been widely used for investigating the structural and dynamic properties of biomacromolecules to provide information that cannot be carried out with molecules composed of natural abundance isotopes. A media formulation for controlled incorporation of deuterium in bacterial cellulose synthesized by Gluconacetobacter xylinus subsp. sucrofermentans is reported. The purified cellulose was characterized using Fourier Transform Infra-Red spectrophotometry and mass spectrometry which revealed that the level of deuterium incorporation in the perdeuterated cellulose was greater than 90 %. Small-angle neutron scattering analysis demonstrated that the overall structure of the cellulose was unaffected by the substitution of deuterium for hydrogen. In addition, by varying the amount of D-glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. A large disk model was used to fit the curves of bacterial cellulose grown using 0 and 100 % D-Glycerol yielding a lower bound to the disk radii, R ₘᵢₙ = 1,132 ± 6 and 1,154 ± 3 Å and disk thickness, T = 128 ± 1 and 83 ± 1 Å for the protiated and deuterated forms of the bacterial cellulose, respectively. This agrees well with the scanning electron microscopy analysis which revealed stacked sheets in the cellulose pellicles. Controlled incorporation of deuterium into cellulose will enable new types of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose and its interactions with proteins and other (bio) polymers.</description><subject>Bacteria</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Deuteration</subject><subject>Deuterium</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Gluconacetobacter xylinus</subject><subject>Glycerol</subject><subject>Incorporation</subject><subject>isotopes</subject><subject>Isotopic enrichment</subject><subject>Lower bounds</subject><subject>Mass spectrometry</subject><subject>Natural Materials</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>polymers</subject><subject>proteins</subject><subject>Scanning electron microscopy</subject><subject>Spectrophotometry</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVoINskD5BTTHvpxcloJEv2pVCWNi0EckgCuQmtdrT14rW2knzI20fGhUAPPQ3DfP8w8zF2xeGGA-jbxKHRUAMXNYDStTxhK95orNsWXz6wFXSqqwFFd8Y-prQHgE4jX7Gv6zDmGIaBtlU_uhCPIdrch7EKvtrSlCn206GMcqg21s2tHSpHwzANIdEFO_V2SHT5t56z5x_fn9Y_6_uHu1_rb_e1kwC5VkKgVB43ym0telLOSUnW664VfouSvHBKKY5CtXLjFXmJbatF2wApElycs0_L3pByb5LrM7nfLowjuWw4b1ALUaAvC3SM4c9EKZtDn-ZT7UhhSqZgIBRXoi3o53_QfZjiWF4wiE3XcUSYKb5QLoaUInlzjP3BxlfDwczazaLdFO1m1m5kyeCSSYUddxTfN_8vdL2EvA3G7mKfzPMjAi_yQGoslt4AAqeMzA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>He, Junhong</creator><creator>Pingali, Sai Venkatesh</creator><creator>Chundawat, Shishir P. S</creator><creator>Pack, Angela</creator><creator>Jones, A. Daniel</creator><creator>Langan, Paul</creator><creator>Davison, Brian H</creator><creator>Urban, Volker</creator><creator>Evans, Barbara</creator><creator>O’Neill, Hugh</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QL</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>20140401</creationdate><title>Controlled incorporation of deuterium into bacterial cellulose</title><author>He, Junhong ; Pingali, Sai Venkatesh ; Chundawat, Shishir P. S ; Pack, Angela ; Jones, A. Daniel ; Langan, Paul ; Davison, Brian H ; Urban, Volker ; Evans, Barbara ; O’Neill, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Deuteration</topic><topic>Deuterium</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Gluconacetobacter xylinus</topic><topic>Glycerol</topic><topic>Incorporation</topic><topic>isotopes</topic><topic>Isotopic enrichment</topic><topic>Lower bounds</topic><topic>Mass spectrometry</topic><topic>Natural Materials</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>polymers</topic><topic>proteins</topic><topic>Scanning electron microscopy</topic><topic>Spectrophotometry</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Junhong</creatorcontrib><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Chundawat, Shishir P. S</creatorcontrib><creatorcontrib>Pack, Angela</creatorcontrib><creatorcontrib>Jones, A. Daniel</creatorcontrib><creatorcontrib>Langan, Paul</creatorcontrib><creatorcontrib>Davison, Brian H</creatorcontrib><creatorcontrib>Urban, Volker</creatorcontrib><creatorcontrib>Evans, Barbara</creatorcontrib><creatorcontrib>O’Neill, Hugh</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Junhong</au><au>Pingali, Sai Venkatesh</au><au>Chundawat, Shishir P. S</au><au>Pack, Angela</au><au>Jones, A. Daniel</au><au>Langan, Paul</au><au>Davison, Brian H</au><au>Urban, Volker</au><au>Evans, Barbara</au><au>O’Neill, Hugh</au><aucorp>Great Lakes Bioenergy Research Center (GLBRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled incorporation of deuterium into bacterial cellulose</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>21</volume><issue>2</issue><spage>927</spage><epage>936</epage><pages>927-936</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Isotopic enrichment has been widely used for investigating the structural and dynamic properties of biomacromolecules to provide information that cannot be carried out with molecules composed of natural abundance isotopes. A media formulation for controlled incorporation of deuterium in bacterial cellulose synthesized by Gluconacetobacter xylinus subsp. sucrofermentans is reported. The purified cellulose was characterized using Fourier Transform Infra-Red spectrophotometry and mass spectrometry which revealed that the level of deuterium incorporation in the perdeuterated cellulose was greater than 90 %. Small-angle neutron scattering analysis demonstrated that the overall structure of the cellulose was unaffected by the substitution of deuterium for hydrogen. In addition, by varying the amount of D-glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. A large disk model was used to fit the curves of bacterial cellulose grown using 0 and 100 % D-Glycerol yielding a lower bound to the disk radii, R ₘᵢₙ = 1,132 ± 6 and 1,154 ± 3 Å and disk thickness, T = 128 ± 1 and 83 ± 1 Å for the protiated and deuterated forms of the bacterial cellulose, respectively. This agrees well with the scanning electron microscopy analysis which revealed stacked sheets in the cellulose pellicles. Controlled incorporation of deuterium into cellulose will enable new types of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose and its interactions with proteins and other (bio) polymers.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10570-013-0067-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2014-04, Vol.21 (2), p.927-936
issn 0969-0239
1572-882X
language eng
recordid cdi_osti_scitechconnect_1152733
source Springer Nature
subjects Bacteria
Bioorganic Chemistry
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Deuteration
Deuterium
Fourier transforms
Glass
Gluconacetobacter xylinus
Glycerol
Incorporation
isotopes
Isotopic enrichment
Lower bounds
Mass spectrometry
Natural Materials
Neutron scattering
Neutrons
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
polymers
proteins
Scanning electron microscopy
Spectrophotometry
Sustainable Development
title Controlled incorporation of deuterium into bacterial cellulose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20incorporation%20of%20deuterium%20into%20bacterial%20cellulose&rft.jtitle=Cellulose%20(London)&rft.au=He,%20Junhong&rft.aucorp=Great%20Lakes%20Bioenergy%20Research%20Center%20(GLBRC)&rft.date=2014-04-01&rft.volume=21&rft.issue=2&rft.spage=927&rft.epage=936&rft.pages=927-936&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-013-0067-4&rft_dat=%3Cproquest_osti_%3E2259912208%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-633246f2b6cda2fe6cc44eaf7983fd24ef3c666123684bf6ef428873850e6e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259912208&rft_id=info:pmid/&rfr_iscdi=true