Loading…

Pulsed Laser Deposition of Photoresponsive Two-Dimensional GaSe Nanosheet Networks

Synthesis of functional metal chalcogenide (GaSe) nanosheet networks by stoichiometric transfer of laser‐vaporized material from bulk GaSe targets is presented. Uniform coverage of interconnected, crystalline, and photoresponsive GaSe nanosheets in both in‐plane and out‐of‐plane orientations are ach...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2014-10, Vol.24 (40), p.6365-6371
Main Authors: Mahjouri-Samani, Masoud, Gresback, Ryan, Tian, Mengkun, Wang, Kai, Puretzky, Alexander A., Rouleau, Christopher M., Eres, Gyula, Ivanov, Ilia N., Xiao, Kai, McGuire, Michael A., Duscher, Gerd, Geohegan, David B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthesis of functional metal chalcogenide (GaSe) nanosheet networks by stoichiometric transfer of laser‐vaporized material from bulk GaSe targets is presented. Uniform coverage of interconnected, crystalline, and photoresponsive GaSe nanosheets in both in‐plane and out‐of‐plane orientations are achieved under different ablation conditions. The propagation of the laser‐vaporized material is characterized by in situ ICCD‐imaging. High (1 Torr) Ar background gas pressure is found to be crucial for the stoichiometric growth of GaSe nanosheet networks. Individual 1–3 layer GaSe triangular nanosheets of ≈200 nm domain size are formed within 30 laser pulses, coalescing to form nanosheet networks in as few as 100 laser pulses. The thickness of the deposited networks increases linearly with pulse number, adding layers in a two‐dimensional (2D) growth mode. GaSe nanosheet networks show p‐type semiconducting characteristics with mobilities reaching as high as 0.1 cm2V−1s−1. Spectrally‐resolved photoresponsivities and external quantum efficiencies range from 0.4 AW−1 and 100% at 700 nm, to 1.4 AW−1 and 600% at 240 nm, respectively. Pulsed laser deposition under these conditions appears to provide a versatile and rapid approach to stoichiometrically transfer and deposit functional networks of 2D nanosheets with digital thickness control and uniformity for a variety of applications. Novel synthesis techniques to rapidly explore the properties of new 2D layered materials, beyond graphene, are of significant current interest. Here, it is demonstrated that pulsed laser deposition (PLD) can be used to synthesize functional gallium selenide (GaSe) nanosheet networks by spatial confinement of the ablation plume to preserve the stoichiometric transfer of material while providing sufficient kinetic energy for surface diffusion.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201401440