Loading…
High thermoelectric performance by resonant dopant indium in nanostructured SnTe
From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with diff...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (33), p.13261-13266 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3 |
container_end_page | 13266 |
container_issue | 33 |
container_start_page | 13261 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Zhang, Qian Liao, Bolin Lan, Yucheng Lukas, Kevin Liu, Weishu Esfarjani, Keivan Opeil, Cyril Broido, David Chen, Gang Ren, Zhifeng |
description | From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K. |
doi_str_mv | 10.1073/pnas.1305735110 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1160687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712895</jstor_id><sourcerecordid>42712895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxSMEotvCmRMQwTnt-Du-IKGKUqRKILU9W44z2c1qYwc7Qep_j6MsCxyskfx-8zzjVxRvCFwSUOxq9DZdEgZCMUEIPCs2BDSpJNfwvNgAUFXVnPKz4jylPQBoUcPL4owyDRmXm-LHbb_dldMO4xDwgG6KvStHjF2Ig_UOy-apjJiCt34q2zAupfdtPw-5lPk2pCnObpojtuW9f8BXxYvOHhK-PtaL4vHmy8P1bXX3_eu36893lRO1mKqukR3VtawbKpCqFmtg1uZRkavGMSGYU3VNtebYNg1KFBJlxxRgPk3TsYvi0-o7zs2ArUM_RXswY-wHG59MsL35X_H9zmzDL8MUl5rpbPBhNcgb9Ca5fkK3c8H7_AmGEAmyVhn6eHwlhp8zpsnswxx9XswQToUArdVCXa2UiyGliN1pDAJmycksOZm_OeWOd_9Of-L_BJOB8ggsnSe77MdYNqKSZOTtiuzTFOKJ4VQRWmuR9fer3tlg7Db2yTzeU8ibAeEguGC_AcIjrO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425509977</pqid></control><display><type>article</type><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><source>PubMed Central(OpenAccess)</source><source>JSTOR</source><creator>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng</creator><creatorcontrib>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng ; Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><description>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305735110</identifier><identifier>PMID: 23901106</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alloys ; Atoms ; Ball milling ; Charge carriers ; Doping ; Electric Conductivity ; Electric properties ; Electrical resistivity ; Heat conductivity ; Hot pressing ; Iridium - chemistry ; Materials Testing ; Melting ; Microscopy, Electron, Scanning ; Models, Chemical ; Nanostructures - chemistry ; Physical Sciences ; Seebeck effect ; Simulation ; solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Tellurium - chemistry ; Temperature ; Thermal conductivity ; Thermoelectric power generation ; Tin Compounds - chemistry ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13261-13266</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 13, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</citedby><cites>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712895$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712895$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795,58240,58473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23901106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160687$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liao, Bolin</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Lukas, Kevin</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Esfarjani, Keivan</creatorcontrib><creatorcontrib>Opeil, Cyril</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</description><subject>Alloys</subject><subject>Atoms</subject><subject>Ball milling</subject><subject>Charge carriers</subject><subject>Doping</subject><subject>Electric Conductivity</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>Hot pressing</subject><subject>Iridium - chemistry</subject><subject>Materials Testing</subject><subject>Melting</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nanostructures - chemistry</subject><subject>Physical Sciences</subject><subject>Seebeck effect</subject><subject>Simulation</subject><subject>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Tellurium - chemistry</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermoelectric power generation</subject><subject>Tin Compounds - chemistry</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxSMEotvCmRMQwTnt-Du-IKGKUqRKILU9W44z2c1qYwc7Qep_j6MsCxyskfx-8zzjVxRvCFwSUOxq9DZdEgZCMUEIPCs2BDSpJNfwvNgAUFXVnPKz4jylPQBoUcPL4owyDRmXm-LHbb_dldMO4xDwgG6KvStHjF2Ig_UOy-apjJiCt34q2zAupfdtPw-5lPk2pCnObpojtuW9f8BXxYvOHhK-PtaL4vHmy8P1bXX3_eu36893lRO1mKqukR3VtawbKpCqFmtg1uZRkavGMSGYU3VNtebYNg1KFBJlxxRgPk3TsYvi0-o7zs2ArUM_RXswY-wHG59MsL35X_H9zmzDL8MUl5rpbPBhNcgb9Ca5fkK3c8H7_AmGEAmyVhn6eHwlhp8zpsnswxx9XswQToUArdVCXa2UiyGliN1pDAJmycksOZm_OeWOd_9Of-L_BJOB8ggsnSe77MdYNqKSZOTtiuzTFOKJ4VQRWmuR9fer3tlg7Db2yTzeU8ibAeEguGC_AcIjrO8</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Zhang, Qian</creator><creator>Liao, Bolin</creator><creator>Lan, Yucheng</creator><creator>Lukas, Kevin</creator><creator>Liu, Weishu</creator><creator>Esfarjani, Keivan</creator><creator>Opeil, Cyril</creator><creator>Broido, David</creator><creator>Chen, Gang</creator><creator>Ren, Zhifeng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130813</creationdate><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><author>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Atoms</topic><topic>Ball milling</topic><topic>Charge carriers</topic><topic>Doping</topic><topic>Electric Conductivity</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>Hot pressing</topic><topic>Iridium - chemistry</topic><topic>Materials Testing</topic><topic>Melting</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nanostructures - chemistry</topic><topic>Physical Sciences</topic><topic>Seebeck effect</topic><topic>Simulation</topic><topic>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Tellurium - chemistry</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermoelectric power generation</topic><topic>Tin Compounds - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liao, Bolin</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Lukas, Kevin</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Esfarjani, Keivan</creatorcontrib><creatorcontrib>Opeil, Cyril</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Liao, Bolin</au><au>Lan, Yucheng</au><au>Lukas, Kevin</au><au>Liu, Weishu</au><au>Esfarjani, Keivan</au><au>Opeil, Cyril</au><au>Broido, David</au><au>Chen, Gang</au><au>Ren, Zhifeng</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>110</volume><issue>33</issue><spage>13261</spage><epage>13266</epage><pages>13261-13266</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23901106</pmid><doi>10.1073/pnas.1305735110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13261-13266 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1160687 |
source | PubMed Central(OpenAccess); JSTOR |
subjects | Alloys Atoms Ball milling Charge carriers Doping Electric Conductivity Electric properties Electrical resistivity Heat conductivity Hot pressing Iridium - chemistry Materials Testing Melting Microscopy, Electron, Scanning Models, Chemical Nanostructures - chemistry Physical Sciences Seebeck effect Simulation solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Tellurium - chemistry Temperature Thermal conductivity Thermoelectric power generation Tin Compounds - chemistry X-Ray Diffraction |
title | High thermoelectric performance by resonant dopant indium in nanostructured SnTe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermoelectric%20performance%20by%20resonant%20dopant%20indium%20in%20nanostructured%20SnTe&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Qian&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Solid-State%20Solar-Thermal%20Energy%20Conversion%20Center%20(S3TEC)&rft.date=2013-08-13&rft.volume=110&rft.issue=33&rft.spage=13261&rft.epage=13266&rft.pages=13261-13266&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305735110&rft_dat=%3Cjstor_osti_%3E42712895%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1425509977&rft_id=info:pmid/23901106&rft_jstor_id=42712895&rfr_iscdi=true |