Loading…

High thermoelectric performance by resonant dopant indium in nanostructured SnTe

From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with diff...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (33), p.13261-13266
Main Authors: Zhang, Qian, Liao, Bolin, Lan, Yucheng, Lukas, Kevin, Liu, Weishu, Esfarjani, Keivan, Opeil, Cyril, Broido, David, Chen, Gang, Ren, Zhifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3
cites cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3
container_end_page 13266
container_issue 33
container_start_page 13261
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Zhang, Qian
Liao, Bolin
Lan, Yucheng
Lukas, Kevin
Liu, Weishu
Esfarjani, Keivan
Opeil, Cyril
Broido, David
Chen, Gang
Ren, Zhifeng
description From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.
doi_str_mv 10.1073/pnas.1305735110
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1160687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712895</jstor_id><sourcerecordid>42712895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxSMEotvCmRMQwTnt-Du-IKGKUqRKILU9W44z2c1qYwc7Qep_j6MsCxyskfx-8zzjVxRvCFwSUOxq9DZdEgZCMUEIPCs2BDSpJNfwvNgAUFXVnPKz4jylPQBoUcPL4owyDRmXm-LHbb_dldMO4xDwgG6KvStHjF2Ig_UOy-apjJiCt34q2zAupfdtPw-5lPk2pCnObpojtuW9f8BXxYvOHhK-PtaL4vHmy8P1bXX3_eu36893lRO1mKqukR3VtawbKpCqFmtg1uZRkavGMSGYU3VNtebYNg1KFBJlxxRgPk3TsYvi0-o7zs2ArUM_RXswY-wHG59MsL35X_H9zmzDL8MUl5rpbPBhNcgb9Ca5fkK3c8H7_AmGEAmyVhn6eHwlhp8zpsnswxx9XswQToUArdVCXa2UiyGliN1pDAJmycksOZm_OeWOd_9Of-L_BJOB8ggsnSe77MdYNqKSZOTtiuzTFOKJ4VQRWmuR9fer3tlg7Db2yTzeU8ibAeEguGC_AcIjrO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425509977</pqid></control><display><type>article</type><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><source>PubMed Central(OpenAccess)</source><source>JSTOR</source><creator>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng</creator><creatorcontrib>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng ; Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><description>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305735110</identifier><identifier>PMID: 23901106</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alloys ; Atoms ; Ball milling ; Charge carriers ; Doping ; Electric Conductivity ; Electric properties ; Electrical resistivity ; Heat conductivity ; Hot pressing ; Iridium - chemistry ; Materials Testing ; Melting ; Microscopy, Electron, Scanning ; Models, Chemical ; Nanostructures - chemistry ; Physical Sciences ; Seebeck effect ; Simulation ; solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Tellurium - chemistry ; Temperature ; Thermal conductivity ; Thermoelectric power generation ; Tin Compounds - chemistry ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13261-13266</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 13, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</citedby><cites>FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712895$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712895$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795,58240,58473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23901106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160687$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liao, Bolin</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Lukas, Kevin</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Esfarjani, Keivan</creatorcontrib><creatorcontrib>Opeil, Cyril</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</description><subject>Alloys</subject><subject>Atoms</subject><subject>Ball milling</subject><subject>Charge carriers</subject><subject>Doping</subject><subject>Electric Conductivity</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>Hot pressing</subject><subject>Iridium - chemistry</subject><subject>Materials Testing</subject><subject>Melting</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nanostructures - chemistry</subject><subject>Physical Sciences</subject><subject>Seebeck effect</subject><subject>Simulation</subject><subject>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Tellurium - chemistry</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermoelectric power generation</subject><subject>Tin Compounds - chemistry</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxSMEotvCmRMQwTnt-Du-IKGKUqRKILU9W44z2c1qYwc7Qep_j6MsCxyskfx-8zzjVxRvCFwSUOxq9DZdEgZCMUEIPCs2BDSpJNfwvNgAUFXVnPKz4jylPQBoUcPL4owyDRmXm-LHbb_dldMO4xDwgG6KvStHjF2Ig_UOy-apjJiCt34q2zAupfdtPw-5lPk2pCnObpojtuW9f8BXxYvOHhK-PtaL4vHmy8P1bXX3_eu36893lRO1mKqukR3VtawbKpCqFmtg1uZRkavGMSGYU3VNtebYNg1KFBJlxxRgPk3TsYvi0-o7zs2ArUM_RXswY-wHG59MsL35X_H9zmzDL8MUl5rpbPBhNcgb9Ca5fkK3c8H7_AmGEAmyVhn6eHwlhp8zpsnswxx9XswQToUArdVCXa2UiyGliN1pDAJmycksOZm_OeWOd_9Of-L_BJOB8ggsnSe77MdYNqKSZOTtiuzTFOKJ4VQRWmuR9fer3tlg7Db2yTzeU8ibAeEguGC_AcIjrO8</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Zhang, Qian</creator><creator>Liao, Bolin</creator><creator>Lan, Yucheng</creator><creator>Lukas, Kevin</creator><creator>Liu, Weishu</creator><creator>Esfarjani, Keivan</creator><creator>Opeil, Cyril</creator><creator>Broido, David</creator><creator>Chen, Gang</creator><creator>Ren, Zhifeng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130813</creationdate><title>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</title><author>Zhang, Qian ; Liao, Bolin ; Lan, Yucheng ; Lukas, Kevin ; Liu, Weishu ; Esfarjani, Keivan ; Opeil, Cyril ; Broido, David ; Chen, Gang ; Ren, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Atoms</topic><topic>Ball milling</topic><topic>Charge carriers</topic><topic>Doping</topic><topic>Electric Conductivity</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>Hot pressing</topic><topic>Iridium - chemistry</topic><topic>Materials Testing</topic><topic>Melting</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nanostructures - chemistry</topic><topic>Physical Sciences</topic><topic>Seebeck effect</topic><topic>Simulation</topic><topic>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Tellurium - chemistry</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermoelectric power generation</topic><topic>Tin Compounds - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liao, Bolin</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Lukas, Kevin</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Esfarjani, Keivan</creatorcontrib><creatorcontrib>Opeil, Cyril</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Liao, Bolin</au><au>Lan, Yucheng</au><au>Lukas, Kevin</au><au>Liu, Weishu</au><au>Esfarjani, Keivan</au><au>Opeil, Cyril</au><au>Broido, David</au><au>Chen, Gang</au><au>Ren, Zhifeng</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermoelectric performance by resonant dopant indium in nanostructured SnTe</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>110</volume><issue>33</issue><spage>13261</spage><epage>13266</epage><pages>13261-13266</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23901106</pmid><doi>10.1073/pnas.1305735110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13261-13266
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1160687
source PubMed Central(OpenAccess); JSTOR
subjects Alloys
Atoms
Ball milling
Charge carriers
Doping
Electric Conductivity
Electric properties
Electrical resistivity
Heat conductivity
Hot pressing
Iridium - chemistry
Materials Testing
Melting
Microscopy, Electron, Scanning
Models, Chemical
Nanostructures - chemistry
Physical Sciences
Seebeck effect
Simulation
solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Tellurium - chemistry
Temperature
Thermal conductivity
Thermoelectric power generation
Tin Compounds - chemistry
X-Ray Diffraction
title High thermoelectric performance by resonant dopant indium in nanostructured SnTe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermoelectric%20performance%20by%20resonant%20dopant%20indium%20in%20nanostructured%20SnTe&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Qian&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Solid-State%20Solar-Thermal%20Energy%20Conversion%20Center%20(S3TEC)&rft.date=2013-08-13&rft.volume=110&rft.issue=33&rft.spage=13261&rft.epage=13266&rft.pages=13261-13266&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305735110&rft_dat=%3Cjstor_osti_%3E42712895%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-fb6f29868b25e27de803aa424e47bc3553c7882994edbbe6e56e6f370e370bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1425509977&rft_id=info:pmid/23901106&rft_jstor_id=42712895&rfr_iscdi=true