Loading…

Microstructure and Optoelectronic Properties of P3HT‑b‑P4VP/PCBM Blends: Impact of PCBM on the Copolymer Self-Assembly

Block copolymers have been widely investigated over the past decades for their ability to microphase separate into well-defined nanostructured thin films with tailored physical properties. The aim of the present study is to investigate the thin film properties of rod–coil block copolymer/phenyl-C61-...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2013-11, Vol.46 (22), p.8824-8831
Main Authors: Gernigon, Véronique, Lévêque, Patrick, Richard, Fanny, Leclerc, Nicolas, Brochon, Cyril, Braun, Christoph H, Ludwigs, Sabine, Anokhin, Denis V, Ivanov, Dimitri A, Hadziioannou, Georges, Heiser, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Block copolymers have been widely investigated over the past decades for their ability to microphase separate into well-defined nanostructured thin films with tailored physical properties. The aim of the present study is to investigate the thin film properties of rod–coil block copolymer/phenyl-C61-butyric acid methyl ester (PCBM) blends as a function of the blend weight ratio, using a copolymer which is based on a poly(3-hexylthiophene) (P3HT) rod block and poly(4-vinylpyridine) (P4VP) coil block. Atomic force microscopy, transmission electron microscopy and grazing incidence X-ray diffraction analysis are used to study the influence of PCBM on the copolymer self-assembling. UV–visible absorption and photoluminescence spectroscopies as well as field-effect mobility measurements are performed in order to get further insight into the blend optoelectronic properties. It is found that the block copolymer phase-separated morphology and charge carrier mobilities strongly depend on the PCBM loading and thermal annealing. In particular, the results point out that PCBM enhances the block copolymer microphase separation within a narrow range of the polymer:PCBM weight ratio. In addition, clear evidence for PCBM accumulation within the P4VP domains is found by monitoring the P3HT fluorescence and charge carrier mobilities.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma4010692