Loading…

A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr

Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2015-01, Vol.162 (4), p.F455-F462
Main Authors: Masud, Jahangir, Van Nguyen, Trung, Singh, Nirala, McFarland, Eric, Ikenberry, Myles, Hohn, Keith, Pan, Chun-Jern, Hwang, Bing-Joe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (io) of the synthesized RhxSy catalysts in H2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm2 to 1.0 mA/cm2 and 0.8 to 0.9 mA/cm2, respectively. The lower io values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br− on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0901504jes