Loading…
Local observation of the site occupancy of Mn in a MnFePSi compound
MnFePSi compounds are promising materials for magnetic refrigeration as they exhibit a giant magnetocaloric effect. From first principles calculations and experiments on bulk materials, it has been proposed that this is due to the Mn and Fe atoms preferentially occupying two different sites within t...
Saved in:
Published in: | Physical review letters 2015-03, Vol.114 (10), p.106101-106101, Article 106101 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MnFePSi compounds are promising materials for magnetic refrigeration as they exhibit a giant magnetocaloric effect. From first principles calculations and experiments on bulk materials, it has been proposed that this is due to the Mn and Fe atoms preferentially occupying two different sites within the atomic lattice. A recently developed technique was used to deconvolve the obscuring effects of both multiple elastic scattering and thermal diffuse scattering of the probe in an atomic resolution electron energy-loss spectroscopy investigation of a MnFePSi compound. This reveals, unambiguously, that the Mn atoms preferentially occupy the 3g site in a hexagonal crystal structure, confirming the theoretical predictions. After deconvolution, the data exhibit a difference in the Fe L_{2,3} ratio between the 3f and 3g sites consistent with differences in magnetic moments calculated from first principles, which are also not observed in the raw data. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.114.106101 |