Loading…

Plasmoids Formation During Simulations of Coaxial Helicity Injection in the National Spherical Torus Experiment

The formation of an elongated Sweet-Parker current sheet and a transition to plasmoid instability has for the first time been predicted by simulations in a large-scale toroidal fusion plasma in the absence of any preexisting instability. Plasmoid instability is demonstrated through resistive MHD sim...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2015-05, Vol.114 (20), p.205003-205003, Article 205003
Main Authors: Ebrahimi, F, Raman, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of an elongated Sweet-Parker current sheet and a transition to plasmoid instability has for the first time been predicted by simulations in a large-scale toroidal fusion plasma in the absence of any preexisting instability. Plasmoid instability is demonstrated through resistive MHD simulations of transient coaxial helicity injection experiments in the National Spherical Torus Experiment (NSTX). Consistent with the theory, fundamental characteristics of the plasmoid instability, including fast reconnection rate, have been observed in these realistic simulations. Motivated by the simulations, experimental camera images have been revisited and suggest the existence of reconnecting plasmoids in NSTX. Global, system-size plasmoid formation observed here should also have strong implications for astrophysical reconnection, such as rapid eruptive solar events.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.114.205003