Loading…

Use of external magnetic fields in hohlraum plasmas to improve laser-coupling

Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2015-01, Vol.22 (1)
Main Authors: Montgomery, D. S., Albright, B. J., Barnak, D. H., Chang, P. Y., Davies, J. R., Fiksel, G., Froula, D. H., Kline, J. L., MacDonald, M. J., Sefkow, A. B., Yin, L., Betti, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with Bz ≤ 7.5-T. We found that an external field Bz = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. The experiments were modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4906055