Loading…

Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration

We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On the basis of the available observational facts we put forward a simplified model of turbulence in clusters of galaxies...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2007-06, Vol.378 (1), p.245-275
Main Authors: Brunetti, G., Lazarian, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133
cites cdi_FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133
container_end_page 275
container_issue 1
container_start_page 245
container_title Monthly notices of the Royal Astronomical Society
container_volume 378
creator Brunetti, G.
Lazarian, A.
description We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On the basis of the available observational facts we put forward a simplified model of turbulence in clusters of galaxies focusing our attention on the compressible motions. In our model intracluster medium (ICM) is represented by a high-beta plasma in which turbulent motions are driven at large scales. The corresponding injection velocities are higher than the Alfvén velocity. As a result, the turbulence is approximately isotropic up to the scale at which the turbulent velocity gets comparable with the Alfvén velocity. These motions are most important for the energetic particle acceleration, but at the same time they are subjected to most of the plasma damping. Under the hypothesis that turbulence in the ICM is highly super-Alfvénic the magnetic field is passively advected and the field lines are bended on scales smaller than that of the classical, unmagnetized, ion–ion mean free path. This affects ion diffusion and the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot (5–10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via resonant coupling with thermal and fast particles. We use collisionless physics to derive the amplitude of the different components of the energy of the compressible modes, and review and extend the treatment of plasma damping in the ICM. We calculate the acceleration of both protons and electrons taking into account both transit time damping acceleration and non-resonant acceleration by large-scale compressions. We find that relativistic electrons can be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of the compressible turbulent-eddies is is the sound speed in the ICM. We find that under typical conditions ≈2–5 per cent of the energy flux of the cascading of compressible motions injected at large scales goes into the acceleration of fast particles and that this may explain the observed non-thermal emission from merging galaxy clusters.
doi_str_mv 10.1111/j.1365-2966.2007.11771.x
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1212047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2007.11771.x</oup_id><sourcerecordid>20510816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133</originalsourceid><addsrcrecordid>eNqNkV2L00AUhoMoWFf_QxD0LnW-Z-qFIFV3haqwrCB6MUxOJnZqmmTnJNj-eyeb0r1R8Nycw8zzvpyPLMspWdIUr3ZLypUs2EqpJSNEp1et6fLwIFucPx5mC0K4LIym9HH2BHFHCBGcqUX2Y93t--gRQ9n4fBhjOTa-BZ-HNv_pGnc45tCMOPiIr_N-e8QAmLu2ynHoYOtwCJD3LqaU5NEXDsA3ProhdO3T7FHtGvTPTvki-_rh_c36qth8ufy4frspQCpKi7JSElaiqigVAoTRSlR1Cl5LaSo1lV7V4IRkTJa1qcBQsSqVrDSva8r5RfZ89u1SOxYhDB620LWth8FSRhkROkEvZ6iP3e3ocbD7gKnXxrW-G9EyIikxVN27ncFdN8Y2DZAYzRXRgiXIzBDEDjH62vYx7F08WkrsdBe7s9P67bR-O93F3t3FHpL0xcnfIbimjq6FgPd6YwhJ8yXuzcz9Do0__re__fT5-q5MBvy0lrH_h7z4W3vFrArp6IezzsVfVmmupb369t1u3rHr9eVNKvgfo5nAJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207360742</pqid></control><display><type>article</type><title>Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB*</source><creator>Brunetti, G. ; Lazarian, A.</creator><creatorcontrib>Brunetti, G. ; Lazarian, A.</creatorcontrib><description>We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On the basis of the available observational facts we put forward a simplified model of turbulence in clusters of galaxies focusing our attention on the compressible motions. In our model intracluster medium (ICM) is represented by a high-beta plasma in which turbulent motions are driven at large scales. The corresponding injection velocities are higher than the Alfvén velocity. As a result, the turbulence is approximately isotropic up to the scale at which the turbulent velocity gets comparable with the Alfvén velocity. These motions are most important for the energetic particle acceleration, but at the same time they are subjected to most of the plasma damping. Under the hypothesis that turbulence in the ICM is highly super-Alfvénic the magnetic field is passively advected and the field lines are bended on scales smaller than that of the classical, unmagnetized, ion–ion mean free path. This affects ion diffusion and the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot (5–10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via resonant coupling with thermal and fast particles. We use collisionless physics to derive the amplitude of the different components of the energy of the compressible modes, and review and extend the treatment of plasma damping in the ICM. We calculate the acceleration of both protons and electrons taking into account both transit time damping acceleration and non-resonant acceleration by large-scale compressions. We find that relativistic electrons can be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of the compressible turbulent-eddies is is the sound speed in the ICM. We find that under typical conditions ≈2–5 per cent of the energy flux of the cascading of compressible motions injected at large scales goes into the acceleration of fast particles and that this may explain the observed non-thermal emission from merging galaxy clusters.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2007.11771.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>acceleration of particles ; Astronomy ; Astrophysics ; Earth, ocean, space ; Exact sciences and technology ; galaxies: clusters: general ; radiation mechanisms: non-thermal ; Radio astronomy ; radio continuum: general ; Stars &amp; galaxies ; Turbulence ; Velocity ; X-ray astronomy ; X-rays: general</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2007-06, Vol.378 (1), p.245-275</ispartof><rights>2007 The Authors. Journal compilation © 2007 RAS 2007</rights><rights>2007 INIST-CNRS</rights><rights>2007 The Authors. Journal compilation © 2007 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133</citedby><cites>FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18800149$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1212047$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunetti, G.</creatorcontrib><creatorcontrib>Lazarian, A.</creatorcontrib><title>Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On the basis of the available observational facts we put forward a simplified model of turbulence in clusters of galaxies focusing our attention on the compressible motions. In our model intracluster medium (ICM) is represented by a high-beta plasma in which turbulent motions are driven at large scales. The corresponding injection velocities are higher than the Alfvén velocity. As a result, the turbulence is approximately isotropic up to the scale at which the turbulent velocity gets comparable with the Alfvén velocity. These motions are most important for the energetic particle acceleration, but at the same time they are subjected to most of the plasma damping. Under the hypothesis that turbulence in the ICM is highly super-Alfvénic the magnetic field is passively advected and the field lines are bended on scales smaller than that of the classical, unmagnetized, ion–ion mean free path. This affects ion diffusion and the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot (5–10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via resonant coupling with thermal and fast particles. We use collisionless physics to derive the amplitude of the different components of the energy of the compressible modes, and review and extend the treatment of plasma damping in the ICM. We calculate the acceleration of both protons and electrons taking into account both transit time damping acceleration and non-resonant acceleration by large-scale compressions. We find that relativistic electrons can be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of the compressible turbulent-eddies is is the sound speed in the ICM. We find that under typical conditions ≈2–5 per cent of the energy flux of the cascading of compressible motions injected at large scales goes into the acceleration of fast particles and that this may explain the observed non-thermal emission from merging galaxy clusters.</description><subject>acceleration of particles</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: clusters: general</subject><subject>radiation mechanisms: non-thermal</subject><subject>Radio astronomy</subject><subject>radio continuum: general</subject><subject>Stars &amp; galaxies</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>X-ray astronomy</subject><subject>X-rays: general</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkV2L00AUhoMoWFf_QxD0LnW-Z-qFIFV3haqwrCB6MUxOJnZqmmTnJNj-eyeb0r1R8Nycw8zzvpyPLMspWdIUr3ZLypUs2EqpJSNEp1et6fLwIFucPx5mC0K4LIym9HH2BHFHCBGcqUX2Y93t--gRQ9n4fBhjOTa-BZ-HNv_pGnc45tCMOPiIr_N-e8QAmLu2ynHoYOtwCJD3LqaU5NEXDsA3ProhdO3T7FHtGvTPTvki-_rh_c36qth8ufy4frspQCpKi7JSElaiqigVAoTRSlR1Cl5LaSo1lV7V4IRkTJa1qcBQsSqVrDSva8r5RfZ89u1SOxYhDB620LWth8FSRhkROkEvZ6iP3e3ocbD7gKnXxrW-G9EyIikxVN27ncFdN8Y2DZAYzRXRgiXIzBDEDjH62vYx7F08WkrsdBe7s9P67bR-O93F3t3FHpL0xcnfIbimjq6FgPd6YwhJ8yXuzcz9Do0__re__fT5-q5MBvy0lrH_h7z4W3vFrArp6IezzsVfVmmupb369t1u3rHr9eVNKvgfo5nAJw</recordid><startdate>20070611</startdate><enddate>20070611</enddate><creator>Brunetti, G.</creator><creator>Lazarian, A.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20070611</creationdate><title>Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration</title><author>Brunetti, G. ; Lazarian, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>acceleration of particles</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: clusters: general</topic><topic>radiation mechanisms: non-thermal</topic><topic>Radio astronomy</topic><topic>radio continuum: general</topic><topic>Stars &amp; galaxies</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>X-ray astronomy</topic><topic>X-rays: general</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunetti, G.</creatorcontrib><creatorcontrib>Lazarian, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunetti, G.</au><au>Lazarian, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2007-06-11</date><risdate>2007</risdate><volume>378</volume><issue>1</issue><spage>245</spage><epage>275</epage><pages>245-275</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On the basis of the available observational facts we put forward a simplified model of turbulence in clusters of galaxies focusing our attention on the compressible motions. In our model intracluster medium (ICM) is represented by a high-beta plasma in which turbulent motions are driven at large scales. The corresponding injection velocities are higher than the Alfvén velocity. As a result, the turbulence is approximately isotropic up to the scale at which the turbulent velocity gets comparable with the Alfvén velocity. These motions are most important for the energetic particle acceleration, but at the same time they are subjected to most of the plasma damping. Under the hypothesis that turbulence in the ICM is highly super-Alfvénic the magnetic field is passively advected and the field lines are bended on scales smaller than that of the classical, unmagnetized, ion–ion mean free path. This affects ion diffusion and the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot (5–10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via resonant coupling with thermal and fast particles. We use collisionless physics to derive the amplitude of the different components of the energy of the compressible modes, and review and extend the treatment of plasma damping in the ICM. We calculate the acceleration of both protons and electrons taking into account both transit time damping acceleration and non-resonant acceleration by large-scale compressions. We find that relativistic electrons can be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of the compressible turbulent-eddies is is the sound speed in the ICM. We find that under typical conditions ≈2–5 per cent of the energy flux of the cascading of compressible motions injected at large scales goes into the acceleration of fast particles and that this may explain the observed non-thermal emission from merging galaxy clusters.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2007.11771.x</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2007-06, Vol.378 (1), p.245-275
issn 0035-8711
1365-2966
language eng
recordid cdi_osti_scitechconnect_1212047
source Open Access: Oxford University Press Open Journals; EZB*
subjects acceleration of particles
Astronomy
Astrophysics
Earth, ocean, space
Exact sciences and technology
galaxies: clusters: general
radiation mechanisms: non-thermal
Radio astronomy
radio continuum: general
Stars & galaxies
Turbulence
Velocity
X-ray astronomy
X-rays: general
title Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T00%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressible%20turbulence%20in%20galaxy%20clusters:%20physics%20and%20stochastic%20particle%20re-acceleration&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Brunetti,%20G.&rft.date=2007-06-11&rft.volume=378&rft.issue=1&rft.spage=245&rft.epage=275&rft.pages=245-275&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2007.11771.x&rft_dat=%3Cproquest_osti_%3E20510816%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5611-bd65c94dd1144c48764dffff3f558d6ffffe6fca45225bf8dc8149b65d73ff133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207360742&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2007.11771.x&rfr_iscdi=true