Loading…
A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals
We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal–organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C 3 sy...
Saved in:
Published in: | Journal of the American Chemical Society 2015-09, Vol.137 (36), p.11598-11601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal–organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C 3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein–metal–organic crystalline framework whose formation is fully dependent on each of its three components. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.5b07463 |