Loading…
Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens
The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to e...
Saved in:
Published in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2016-02, Vol.107 (C), p.7-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3 |
container_end_page | 13 |
container_issue | C |
container_start_page | 7 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 107 |
creator | Zacharoff, Lori Chan, Chi Ho Bond, Daniel R. |
description | The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than −0.1V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at −0.1V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below −0.1V vs. SHE.
[Display omitted]
•G. sulfurreducens electron transfer pathways vary with redox potential.•CbcL is a putative inner membrane multiheme cytochrome quinone oxioreductase.•Deletion of cbcL impaired reduction of only low potential electron acceptors.•ΔcbcL cyclic voltammetry is specifically altered near −0.15V vs. SHE.•Data is consistent with 3 inner membrane pathways active at different potentials. |
doi_str_mv | 10.1016/j.bioelechem.2015.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1222041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539415300190</els_id><sourcerecordid>1732310556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaf76CkV01Y1dXcmyPMt2SNLAQKG0kJ2Q5GtGg21NJLkhbx-ZSdtlVhLoO_dcnUMIBVYDg_bLobY-4Ihuj1PNGciadTVj4g05h051lWz5_dtyl62qpNg0Z-QipQNjrAMl35Mz3jZMMdmck-Un9ovLPsw0DHQMj_QYMs7Zm5GuBjmWF-McHnOIiUZ8WHzERPMe6da6HfXzjJFOONloZqTuKQe3j2HCdd4tBmtcLkBaxmGJcTXDOV2Rd4MZE354OS_J75vrX9vv1e7H7d32665yElSuQNki5xJYMxgrDNgNtwpb2LQOYOgawYToOdihB2NxY1prhbROcWn7wotL8uk0N6TsdXI-l8hcKCu7rIFzzhoo0OcTdIzhYcGU9eSTw3Es_wlL0qAEF8CkbAvanVAXQ0oRB32MfjLxSQPTazP6oP83o9dmNOt0aaZIP764LHbC_p_wbxUF-HYCsATyx2Nc98XZYV8CL-v2wb_u8gxZ3qcU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732310556</pqid></control><display><type>article</type><title>Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zacharoff, Lori ; Chan, Chi Ho ; Bond, Daniel R.</creator><creatorcontrib>Zacharoff, Lori ; Chan, Chi Ho ; Bond, Daniel R. ; Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><description>The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than −0.1V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at −0.1V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below −0.1V vs. SHE.
[Display omitted]
•G. sulfurreducens electron transfer pathways vary with redox potential.•CbcL is a putative inner membrane multiheme cytochrome quinone oxioreductase.•Deletion of cbcL impaired reduction of only low potential electron acceptors.•ΔcbcL cyclic voltammetry is specifically altered near −0.15V vs. SHE.•Data is consistent with 3 inner membrane pathways active at different potentials.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2015.08.003</identifier><identifier>PMID: 26407054</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Bioelectric Energy Sources ; Biofilms - growth & development ; Cytochrome ; Cytochromes - genetics ; Cytochromes - metabolism ; Electrochemistry ; Electrodes ; Electron Transport ; Extracellular respiration ; Ferric Compounds - metabolism ; Gene Deletion ; Geobacter ; Geobacter - enzymology ; Geobacter - metabolism ; Manganese Compounds - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metal reduction ; Microbial electrochemical cell ; Oxides - metabolism</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2016-02, Vol.107 (C), p.7-13</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3</citedby><cites>FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3</cites><orcidid>0000-0002-6596-3436 ; 0000000265963436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26407054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1222041$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zacharoff, Lori</creatorcontrib><creatorcontrib>Chan, Chi Ho</creatorcontrib><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><title>Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than −0.1V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at −0.1V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below −0.1V vs. SHE.
[Display omitted]
•G. sulfurreducens electron transfer pathways vary with redox potential.•CbcL is a putative inner membrane multiheme cytochrome quinone oxioreductase.•Deletion of cbcL impaired reduction of only low potential electron acceptors.•ΔcbcL cyclic voltammetry is specifically altered near −0.15V vs. SHE.•Data is consistent with 3 inner membrane pathways active at different potentials.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms - growth & development</subject><subject>Cytochrome</subject><subject>Cytochromes - genetics</subject><subject>Cytochromes - metabolism</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron Transport</subject><subject>Extracellular respiration</subject><subject>Ferric Compounds - metabolism</subject><subject>Gene Deletion</subject><subject>Geobacter</subject><subject>Geobacter - enzymology</subject><subject>Geobacter - metabolism</subject><subject>Manganese Compounds - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metal reduction</subject><subject>Microbial electrochemical cell</subject><subject>Oxides - metabolism</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpaf76CkV01Y1dXcmyPMt2SNLAQKG0kJ2Q5GtGg21NJLkhbx-ZSdtlVhLoO_dcnUMIBVYDg_bLobY-4Ihuj1PNGciadTVj4g05h051lWz5_dtyl62qpNg0Z-QipQNjrAMl35Mz3jZMMdmck-Un9ovLPsw0DHQMj_QYMs7Zm5GuBjmWF-McHnOIiUZ8WHzERPMe6da6HfXzjJFOONloZqTuKQe3j2HCdd4tBmtcLkBaxmGJcTXDOV2Rd4MZE354OS_J75vrX9vv1e7H7d32665yElSuQNki5xJYMxgrDNgNtwpb2LQOYOgawYToOdihB2NxY1prhbROcWn7wotL8uk0N6TsdXI-l8hcKCu7rIFzzhoo0OcTdIzhYcGU9eSTw3Es_wlL0qAEF8CkbAvanVAXQ0oRB32MfjLxSQPTazP6oP83o9dmNOt0aaZIP764LHbC_p_wbxUF-HYCsATyx2Nc98XZYV8CL-v2wb_u8gxZ3qcU</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Zacharoff, Lori</creator><creator>Chan, Chi Ho</creator><creator>Bond, Daniel R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6596-3436</orcidid><orcidid>https://orcid.org/0000000265963436</orcidid></search><sort><creationdate>201602</creationdate><title>Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens</title><author>Zacharoff, Lori ; Chan, Chi Ho ; Bond, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms - growth & development</topic><topic>Cytochrome</topic><topic>Cytochromes - genetics</topic><topic>Cytochromes - metabolism</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron Transport</topic><topic>Extracellular respiration</topic><topic>Ferric Compounds - metabolism</topic><topic>Gene Deletion</topic><topic>Geobacter</topic><topic>Geobacter - enzymology</topic><topic>Geobacter - metabolism</topic><topic>Manganese Compounds - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metal reduction</topic><topic>Microbial electrochemical cell</topic><topic>Oxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zacharoff, Lori</creatorcontrib><creatorcontrib>Chan, Chi Ho</creatorcontrib><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zacharoff, Lori</au><au>Chan, Chi Ho</au><au>Bond, Daniel R.</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2016-02</date><risdate>2016</risdate><volume>107</volume><issue>C</issue><spage>7</spage><epage>13</epage><pages>7-13</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than −0.1V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at −0.1V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below −0.1V vs. SHE.
[Display omitted]
•G. sulfurreducens electron transfer pathways vary with redox potential.•CbcL is a putative inner membrane multiheme cytochrome quinone oxioreductase.•Deletion of cbcL impaired reduction of only low potential electron acceptors.•ΔcbcL cyclic voltammetry is specifically altered near −0.15V vs. SHE.•Data is consistent with 3 inner membrane pathways active at different potentials.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26407054</pmid><doi>10.1016/j.bioelechem.2015.08.003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6596-3436</orcidid><orcidid>https://orcid.org/0000000265963436</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2016-02, Vol.107 (C), p.7-13 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_osti_scitechconnect_1222041 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Bioelectric Energy Sources Biofilms - growth & development Cytochrome Cytochromes - genetics Cytochromes - metabolism Electrochemistry Electrodes Electron Transport Extracellular respiration Ferric Compounds - metabolism Gene Deletion Geobacter Geobacter - enzymology Geobacter - metabolism Manganese Compounds - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Metal reduction Microbial electrochemical cell Oxides - metabolism |
title | Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20low%20potential%20electron%20acceptors%20requires%20the%20CbcL%20inner%20membrane%20cytochrome%20of%20Geobacter%20sulfurreducens&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Zacharoff,%20Lori&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2016-02&rft.volume=107&rft.issue=C&rft.spage=7&rft.epage=13&rft.pages=7-13&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2015.08.003&rft_dat=%3Cproquest_osti_%3E1732310556%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-17bbac25104fab3a1b92b7e6196c11f843033d21bfd1abe9a6bb35bc725bdb3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732310556&rft_id=info:pmid/26407054&rfr_iscdi=true |