Loading…
Further investigation of g factors for the lead monofluoride ground state
We report the results of our theoretical study and analysis of earlier experimental data for the g-factor tensor components of the ground 2II1/2 state of the free PbF radical. These values obtained both within the relativistic coupled-cluster method combined with the generalized relativistic effecti...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2015-09, Vol.92 (3), Article 032508 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the results of our theoretical study and analysis of earlier experimental data for the g-factor tensor components of the ground 2II1/2 state of the free PbF radical. These values obtained both within the relativistic coupled-cluster method combined with the generalized relativistic effective core potential approach and with our fit of the experimental data from [R. J. Mawhorter, B. S. Murphy, A. L. Baum, T. J. Sears, T. Yang, P. M. Rupasinghe, C. P. McRaven, N. E. Shafer-Ray, L. D. Alphei, and J.-U. Grabow, Phys. Rev. A 84, 022508 (2011); A. L. Baum, B.A. thesis, Pomona College, 2011]. The obtained results agree very well with each other but contradict the previous fit performed in the cited works. Our final prediction for g factors is G∥=0.081(5),G⊥=–0.27(1). |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.92.032508 |