Loading…
Ab initio Lattice Results for Fermi Polarons in Two Dimensions
We investigate the attractive Fermi polaron problem in two dimensions using nonperturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only sm...
Saved in:
Published in: | Physical review letters 2015-10, Vol.115 (18), p.185301-185301, Article 185301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the attractive Fermi polaron problem in two dimensions using nonperturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only small sign oscillations for systems with a single impurity. As a benchmark of the method, we calculate the universal polaron energy in three dimensions in the scale-invariant unitarity limit and find agreement with published results. We then present the first fully nonperturbative calculations of the polaron energy in two dimensions and density correlations between the impurity and majority particles in the limit of zero-range interactions. We find evidence for a smooth crossover transition from fermionic quasiparticle to molecular state as a function of the interaction strength. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.115.185301 |