Loading…

On filament structure and propagation within a commercial plasma globe

The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leavi...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2015-05, Vol.22 (5), p.53509
Main Authors: Burin, M. J., Simmons, G. G., Ceja, H. G., Zweben, S. J., Nagy, A., Brunkhorst, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733
cites cdi_FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733
container_end_page
container_issue 5
container_start_page 53509
container_title Physics of plasmas
container_volume 22
creator Burin, M. J.
Simmons, G. G.
Ceja, H. G.
Zweben, S. J.
Nagy, A.
Brunkhorst, C.
description The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.
doi_str_mv 10.1063/1.4919939
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1228290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123802590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733</originalsourceid><addsrcrecordid>eNotkM1KAzEAhIMoWKsH3yDoycPW_O4mRylWhUIvCt5CNk3alN1kTbKIb9_W9jRz-BhmBoB7jGYY1fQZz5jEUlJ5ASYYCVk1dcMuj75BVV2z72twk_MOIcRqLiZgsQrQ-U73NhSYSxpNGZOFOqzhkOKgN7r4GOCvL1sfoIYm9r1NxusODp3OvYabLrb2Flw53WV7d9Yp-Fq8fs7fq-Xq7WP-sqwMxbJUXLdOCMNdy3HNGENccG4MbTXGVkuCmUPCONauOUHE6raxEhsujRZUuobSKXg45cZcvMrGF2u2JoZgTVGYEEEkOkCPJ-iw4Ge0uahdHFM49FIEEyoQ4f_U04kyKeacrFND8r1OfwojdfxSYXX-ku4BIw9lPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123802590</pqid></control><display><type>article</type><title>On filament structure and propagation within a commercial plasma globe</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Burin, M. J. ; Simmons, G. G. ; Ceja, H. G. ; Zweben, S. J. ; Nagy, A. ; Brunkhorst, C.</creator><creatorcontrib>Burin, M. J. ; Simmons, G. G. ; Ceja, H. G. ; Zweben, S. J. ; Nagy, A. ; Brunkhorst, C.</creatorcontrib><description>The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4919939</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dielectric barrier discharge ; Drift estimation ; Electric potential ; Filaments ; High voltages ; Plasma physics ; Plasmas (physics) ; Polarity ; Voltage amplifiers</subject><ispartof>Physics of plasmas, 2015-05, Vol.22 (5), p.53509</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733</citedby><cites>FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733</cites><orcidid>0000-0002-1738-0586 ; 0000-0003-2876-3432 ; 0000000328763432 ; 0000000217380586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1228290$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burin, M. J.</creatorcontrib><creatorcontrib>Simmons, G. G.</creatorcontrib><creatorcontrib>Ceja, H. G.</creatorcontrib><creatorcontrib>Zweben, S. J.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Brunkhorst, C.</creatorcontrib><title>On filament structure and propagation within a commercial plasma globe</title><title>Physics of plasmas</title><description>The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.</description><subject>Dielectric barrier discharge</subject><subject>Drift estimation</subject><subject>Electric potential</subject><subject>Filaments</subject><subject>High voltages</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Polarity</subject><subject>Voltage amplifiers</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEAhIMoWKsH3yDoycPW_O4mRylWhUIvCt5CNk3alN1kTbKIb9_W9jRz-BhmBoB7jGYY1fQZz5jEUlJ5ASYYCVk1dcMuj75BVV2z72twk_MOIcRqLiZgsQrQ-U73NhSYSxpNGZOFOqzhkOKgN7r4GOCvL1sfoIYm9r1NxusODp3OvYabLrb2Flw53WV7d9Yp-Fq8fs7fq-Xq7WP-sqwMxbJUXLdOCMNdy3HNGENccG4MbTXGVkuCmUPCONauOUHE6raxEhsujRZUuobSKXg45cZcvMrGF2u2JoZgTVGYEEEkOkCPJ-iw4Ge0uahdHFM49FIEEyoQ4f_U04kyKeacrFND8r1OfwojdfxSYXX-ku4BIw9lPw</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Burin, M. J.</creator><creator>Simmons, G. G.</creator><creator>Ceja, H. G.</creator><creator>Zweben, S. J.</creator><creator>Nagy, A.</creator><creator>Brunkhorst, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1738-0586</orcidid><orcidid>https://orcid.org/0000-0003-2876-3432</orcidid><orcidid>https://orcid.org/0000000328763432</orcidid><orcidid>https://orcid.org/0000000217380586</orcidid></search><sort><creationdate>201505</creationdate><title>On filament structure and propagation within a commercial plasma globe</title><author>Burin, M. J. ; Simmons, G. G. ; Ceja, H. G. ; Zweben, S. J. ; Nagy, A. ; Brunkhorst, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dielectric barrier discharge</topic><topic>Drift estimation</topic><topic>Electric potential</topic><topic>Filaments</topic><topic>High voltages</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Polarity</topic><topic>Voltage amplifiers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burin, M. J.</creatorcontrib><creatorcontrib>Simmons, G. G.</creatorcontrib><creatorcontrib>Ceja, H. G.</creatorcontrib><creatorcontrib>Zweben, S. J.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Brunkhorst, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burin, M. J.</au><au>Simmons, G. G.</au><au>Ceja, H. G.</au><au>Zweben, S. J.</au><au>Nagy, A.</au><au>Brunkhorst, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On filament structure and propagation within a commercial plasma globe</atitle><jtitle>Physics of plasmas</jtitle><date>2015-05</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><spage>53509</spage><pages>53509-</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4919939</doi><orcidid>https://orcid.org/0000-0002-1738-0586</orcidid><orcidid>https://orcid.org/0000-0003-2876-3432</orcidid><orcidid>https://orcid.org/0000000328763432</orcidid><orcidid>https://orcid.org/0000000217380586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2015-05, Vol.22 (5), p.53509
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1228290
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Dielectric barrier discharge
Drift estimation
Electric potential
Filaments
High voltages
Plasma physics
Plasmas (physics)
Polarity
Voltage amplifiers
title On filament structure and propagation within a commercial plasma globe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20filament%20structure%20and%20propagation%20within%20a%20commercial%20plasma%20globe&rft.jtitle=Physics%20of%20plasmas&rft.au=Burin,%20M.%20J.&rft.date=2015-05&rft.volume=22&rft.issue=5&rft.spage=53509&rft.pages=53509-&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.4919939&rft_dat=%3Cproquest_osti_%3E2123802590%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-5abf88c5fb51644405855cc3ba11ea9214f08cf4bd5202eab7e91c59ca839f733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123802590&rft_id=info:pmid/&rfr_iscdi=true