Loading…
Impact of Nanostructure on Mechanical Properties of Norbornene-based Block Copolymers under Simulated Operating Conditions for Biobutanol Membranes
The structure and mechanical properties of a novel block copolymer (BCP) system with T g’s for both segments exceeding 300 °C, poly(butylnorbornene)-block-poly(hydroxyhexafluoroisopropyl norbornene) (BuNB-b-HFANB), are investigated as a function of processing conditions used for solvent vapor anne...
Saved in:
Published in: | ACS applied materials & interfaces 2015-06, Vol.7 (22), p.11765-11774 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structure and mechanical properties of a novel block copolymer (BCP) system with T g’s for both segments exceeding 300 °C, poly(butylnorbornene)-block-poly(hydroxyhexafluoroisopropyl norbornene) (BuNB-b-HFANB), are investigated as a function of processing conditions used for solvent vapor annealing (SVA). Solvent selection impacts long-range order markedly, but unexpectedly vertical orientation of cylinders are preferred over a wide range of solubility parameters, as determined by atomic force microscopy and grazing incidence small-angle X-ray scattering. The mechanical properties (elastic modulus, fracture strength, and onset fracture strain) are dependent upon the long-range order induced during SVA and determined using the combination of surface wrinkling and cracking. The modulus and fracture strength of the films increase from 1.44 GPa and 12.1 MPa to 1.77 GPa and 17.5 MPa, respectively, whereas the onset fracture strain decreases from 1.6% to approximately 0.6% as the ordering is improved. The polarity difference in the segments of the BCP is attractive for membrane separations, especially butanol–water. For biobutanol recovery, the titers are typically |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b02692 |