Loading…
Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering
We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+ delta (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energ...
Saved in:
Published in: | Physical review. B 2015-10, Vol.92 (13), Article 134502 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+ delta (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A1g scale is no longer detectable, while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with underdoping, while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be a universal feature of hole-doped cuprates. We propose that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome. |
---|---|
ISSN: | 1098-0121 2469-9950 1550-235X 2469-9969 |
DOI: | 10.1103/PhysRevB.92.134502 |