Loading…

One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳5×1019 m−3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls account...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-12, Vol.118 (24)
Main Authors: Chaplin, Vernon H., Bellan, Paul M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3
cites cdi_FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 118
creator Chaplin, Vernon H.
Bellan, Paul M.
description A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳5×1019 m−3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr=30−60 mTorr. We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.
doi_str_mv 10.1063/1.4938490
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1236697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123762499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3</originalsourceid><addsrcrecordid>eNot0D1PwzAQBmALgUQpDPwDCyaGFDt2EntEFV9SpS4wW659oa5SO9hOUf49qdrpbnjek-5F6J6SBSU1e6YLLpngklygGSVCFk1VkUs0I6SkhZCNvEY3Ke0IoVQwOUNu7aGwbg8-ueB1h_O0FxZ68BZ8xm03OIv3wUKHQ4s1PkAc8db9bLE9ZvKIu_BX9BFSGiJg5-1gsjtAN2IThr4Di_tOp72-RVet7hLcneccfb-9fi0_itX6_XP5sioMozIX1EppQFdcE9MSTioiqkYw23DJBSktVERrKGWrSylhY6zg2sCmAc4EsBbYHD2c7oaUnUrGZTBbE7wHkxUtWV3LZkKPJ9TH8DtAymoXhjj9n1Q5maYuuZSTejopE0NKEVrVR7fXcVSUqGPdiqpz3ewfsbVy8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123762499</pqid></control><display><type>article</type><title>One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chaplin, Vernon H. ; Bellan, Paul M.</creator><creatorcontrib>Chaplin, Vernon H. ; Bellan, Paul M. ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳5×1019 m−3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr=30−60 mTorr. We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4938490</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Ambipolar diffusion ; antennas ; Applied physics ; Argon ; atomic model ; Computer simulation ; diffusion ; Electron density ; Electron energy ; Energy budget ; excited states ; experiment design ; Inductively coupled plasma ; Ionization ; Mathematical models ; Plasma ; Plasma density ; plasma transport ; Populations ; Radio frequency ; Temperature dependence ; Time dependence ; Two fluid models ; two-fluid model</subject><ispartof>Journal of applied physics, 2015-12, Vol.118 (24)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3</citedby><cites>FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3</cites><orcidid>0000-0001-9750-6769 ; 0000-0002-0886-8782 ; 0000000208868782 ; 0000000197506769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1236697$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaplin, Vernon H.</creatorcontrib><creatorcontrib>Bellan, Paul M.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma</title><title>Journal of applied physics</title><description>A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳5×1019 m−3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr=30−60 mTorr. We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Ambipolar diffusion</subject><subject>antennas</subject><subject>Applied physics</subject><subject>Argon</subject><subject>atomic model</subject><subject>Computer simulation</subject><subject>diffusion</subject><subject>Electron density</subject><subject>Electron energy</subject><subject>Energy budget</subject><subject>excited states</subject><subject>experiment design</subject><subject>Inductively coupled plasma</subject><subject>Ionization</subject><subject>Mathematical models</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>plasma transport</subject><subject>Populations</subject><subject>Radio frequency</subject><subject>Temperature dependence</subject><subject>Time dependence</subject><subject>Two fluid models</subject><subject>two-fluid model</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNot0D1PwzAQBmALgUQpDPwDCyaGFDt2EntEFV9SpS4wW659oa5SO9hOUf49qdrpbnjek-5F6J6SBSU1e6YLLpngklygGSVCFk1VkUs0I6SkhZCNvEY3Ke0IoVQwOUNu7aGwbg8-ueB1h_O0FxZ68BZ8xm03OIv3wUKHQ4s1PkAc8db9bLE9ZvKIu_BX9BFSGiJg5-1gsjtAN2IThr4Di_tOp72-RVet7hLcneccfb-9fi0_itX6_XP5sioMozIX1EppQFdcE9MSTioiqkYw23DJBSktVERrKGWrSylhY6zg2sCmAc4EsBbYHD2c7oaUnUrGZTBbE7wHkxUtWV3LZkKPJ9TH8DtAymoXhjj9n1Q5maYuuZSTejopE0NKEVrVR7fXcVSUqGPdiqpz3ewfsbVy8A</recordid><startdate>20151228</startdate><enddate>20151228</enddate><creator>Chaplin, Vernon H.</creator><creator>Bellan, Paul M.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9750-6769</orcidid><orcidid>https://orcid.org/0000-0002-0886-8782</orcidid><orcidid>https://orcid.org/0000000208868782</orcidid><orcidid>https://orcid.org/0000000197506769</orcidid></search><sort><creationdate>20151228</creationdate><title>One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma</title><author>Chaplin, Vernon H. ; Bellan, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Ambipolar diffusion</topic><topic>antennas</topic><topic>Applied physics</topic><topic>Argon</topic><topic>atomic model</topic><topic>Computer simulation</topic><topic>diffusion</topic><topic>Electron density</topic><topic>Electron energy</topic><topic>Energy budget</topic><topic>excited states</topic><topic>experiment design</topic><topic>Inductively coupled plasma</topic><topic>Ionization</topic><topic>Mathematical models</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>plasma transport</topic><topic>Populations</topic><topic>Radio frequency</topic><topic>Temperature dependence</topic><topic>Time dependence</topic><topic>Two fluid models</topic><topic>two-fluid model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaplin, Vernon H.</creatorcontrib><creatorcontrib>Bellan, Paul M.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaplin, Vernon H.</au><au>Bellan, Paul M.</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma</atitle><jtitle>Journal of applied physics</jtitle><date>2015-12-28</date><risdate>2015</risdate><volume>118</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳5×1019 m−3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr=30−60 mTorr. We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4938490</doi><orcidid>https://orcid.org/0000-0001-9750-6769</orcidid><orcidid>https://orcid.org/0000-0002-0886-8782</orcidid><orcidid>https://orcid.org/0000000208868782</orcidid><orcidid>https://orcid.org/0000000197506769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-12, Vol.118 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1236697
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Ambipolar diffusion
antennas
Applied physics
Argon
atomic model
Computer simulation
diffusion
Electron density
Electron energy
Energy budget
excited states
experiment design
Inductively coupled plasma
Ionization
Mathematical models
Plasma
Plasma density
plasma transport
Populations
Radio frequency
Temperature dependence
Time dependence
Two fluid models
two-fluid model
title One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20time-dependent%20fluid%20model%20of%20a%20very%20high%20density%20low-pressure%20inductively%20coupled%20plasma&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chaplin,%20Vernon%20H.&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2015-12-28&rft.volume=118&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4938490&rft_dat=%3Cproquest_osti_%3E2123762499%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1d99cea54a0cf0405085783d7494802de50aae29fa299ebcd84aceb7e438e3fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123762499&rft_id=info:pmid/&rfr_iscdi=true