Loading…

Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2015-10, Vol.15 (10), p.7016-7022
Main Authors: Luo, Langli, Zhao, Peng, Yang, Hui, Liu, Borui, Zhang, Ji-Guang, Cui, Yi, Yu, Guihua, Zhang, Sulin, Wang, Chong-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3
cites cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3
container_end_page 7022
container_issue 10
container_start_page 7016
container_title Nano letters
container_volume 15
creator Luo, Langli
Zhao, Peng
Yang, Hui
Liu, Borui
Zhang, Ji-Guang
Cui, Yi
Yu, Guihua
Zhang, Sulin
Wang, Chong-Min
description One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.
doi_str_mv 10.1021/acs.nanolett.5b03047
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1243087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722419138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EakvoP0DI4sRlU3-td_dYUiiRIjgEztasd7ZxtbGD7T3w7-soaY-op5nD847H8xDykbMlZ4LfgE1LDz5MmPOy7plkqnlDrngtWaW7Trx96Vt1Sd6n9MgY62TNLsil0IorLtgVOWznOIJFugqQnX8o1accwflM136YLQ50i9NY3blkdxAfjkwY6dZNzgZPf5YNDhCzsxMmCone-jCUbgyRblzeuXlP14X7CjljdJg-kHcjTAmvz3VB_nz_9nv1o9r8ul-vbjcVqEblijedBAm6r2uslR2RadEq2w19q3upWi1H7AEYaiXHRtdtIzUMvRC8lX3HrVyQz6e5IWVnknUZ7a5s7NFmw4WSrEQW5MsJOsTwd8aUzb58E6cJPIY5Gd40TPJyTf0KVAjFOy7bgqoTamNIKeJoDtHtIf4znJmjO1PcmWd35uyuxD6dX5j7PQ4voWdZBWAn4Bh_DHP05YD_n_kE2aCosQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722419138</pqid></control><display><type>article</type><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min</creator><creatorcontrib>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b03047</identifier><identifier>PMID: 26414120</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anodes ; Coating ; Coatings ; Lithium-ion batteries ; Nanoparticles ; Nanostructure ; Rechargeable batteries ; Silicon</subject><ispartof>Nano letters, 2015-10, Vol.15 (10), p.7016-7022</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</citedby><cites>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26414120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1243087$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Zhang, Sulin</creatorcontrib><creatorcontrib>Wang, Chong-Min</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</description><subject>Anodes</subject><subject>Coating</subject><subject>Coatings</subject><subject>Lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EakvoP0DI4sRlU3-td_dYUiiRIjgEztasd7ZxtbGD7T3w7-soaY-op5nD847H8xDykbMlZ4LfgE1LDz5MmPOy7plkqnlDrngtWaW7Trx96Vt1Sd6n9MgY62TNLsil0IorLtgVOWznOIJFugqQnX8o1accwflM136YLQ50i9NY3blkdxAfjkwY6dZNzgZPf5YNDhCzsxMmCone-jCUbgyRblzeuXlP14X7CjljdJg-kHcjTAmvz3VB_nz_9nv1o9r8ul-vbjcVqEblijedBAm6r2uslR2RadEq2w19q3upWi1H7AEYaiXHRtdtIzUMvRC8lX3HrVyQz6e5IWVnknUZ7a5s7NFmw4WSrEQW5MsJOsTwd8aUzb58E6cJPIY5Gd40TPJyTf0KVAjFOy7bgqoTamNIKeJoDtHtIf4znJmjO1PcmWd35uyuxD6dX5j7PQ4voWdZBWAn4Bh_DHP05YD_n_kE2aCosQ</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>Luo, Langli</creator><creator>Zhao, Peng</creator><creator>Yang, Hui</creator><creator>Liu, Borui</creator><creator>Zhang, Ji-Guang</creator><creator>Cui, Yi</creator><creator>Yu, Guihua</creator><creator>Zhang, Sulin</creator><creator>Wang, Chong-Min</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151014</creationdate><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><author>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Coating</topic><topic>Coatings</topic><topic>Lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Zhang, Sulin</creatorcontrib><creatorcontrib>Wang, Chong-Min</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Langli</au><au>Zhao, Peng</au><au>Yang, Hui</au><au>Liu, Borui</au><au>Zhang, Ji-Guang</au><au>Cui, Yi</au><au>Yu, Guihua</au><au>Zhang, Sulin</au><au>Wang, Chong-Min</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-10-14</date><risdate>2015</risdate><volume>15</volume><issue>10</issue><spage>7016</spage><epage>7022</epage><pages>7016-7022</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26414120</pmid><doi>10.1021/acs.nanolett.5b03047</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-10, Vol.15 (10), p.7016-7022
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1243087
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anodes
Coating
Coatings
Lithium-ion batteries
Nanoparticles
Nanostructure
Rechargeable batteries
Silicon
title Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Coating%20Constraint%20Induced%20Self-Discharging%20of%20Silicon%20Nanoparticles%20as%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Nano%20letters&rft.au=Luo,%20Langli&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2015-10-14&rft.volume=15&rft.issue=10&rft.spage=7016&rft.epage=7022&rft.pages=7016-7022&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b03047&rft_dat=%3Cproquest_osti_%3E1722419138%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722419138&rft_id=info:pmid/26414120&rfr_iscdi=true