Loading…
Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries
One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers...
Saved in:
Published in: | Nano letters 2015-10, Vol.15 (10), p.7016-7022 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3 |
container_end_page | 7022 |
container_issue | 10 |
container_start_page | 7016 |
container_title | Nano letters |
container_volume | 15 |
creator | Luo, Langli Zhao, Peng Yang, Hui Liu, Borui Zhang, Ji-Guang Cui, Yi Yu, Guihua Zhang, Sulin Wang, Chong-Min |
description | One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries. |
doi_str_mv | 10.1021/acs.nanolett.5b03047 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1243087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722419138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EakvoP0DI4sRlU3-td_dYUiiRIjgEztasd7ZxtbGD7T3w7-soaY-op5nD847H8xDykbMlZ4LfgE1LDz5MmPOy7plkqnlDrngtWaW7Trx96Vt1Sd6n9MgY62TNLsil0IorLtgVOWznOIJFugqQnX8o1accwflM136YLQ50i9NY3blkdxAfjkwY6dZNzgZPf5YNDhCzsxMmCone-jCUbgyRblzeuXlP14X7CjljdJg-kHcjTAmvz3VB_nz_9nv1o9r8ul-vbjcVqEblijedBAm6r2uslR2RadEq2w19q3upWi1H7AEYaiXHRtdtIzUMvRC8lX3HrVyQz6e5IWVnknUZ7a5s7NFmw4WSrEQW5MsJOsTwd8aUzb58E6cJPIY5Gd40TPJyTf0KVAjFOy7bgqoTamNIKeJoDtHtIf4znJmjO1PcmWd35uyuxD6dX5j7PQ4voWdZBWAn4Bh_DHP05YD_n_kE2aCosQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722419138</pqid></control><display><type>article</type><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min</creator><creatorcontrib>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b03047</identifier><identifier>PMID: 26414120</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anodes ; Coating ; Coatings ; Lithium-ion batteries ; Nanoparticles ; Nanostructure ; Rechargeable batteries ; Silicon</subject><ispartof>Nano letters, 2015-10, Vol.15 (10), p.7016-7022</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</citedby><cites>FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26414120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1243087$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Zhang, Sulin</creatorcontrib><creatorcontrib>Wang, Chong-Min</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</description><subject>Anodes</subject><subject>Coating</subject><subject>Coatings</subject><subject>Lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EakvoP0DI4sRlU3-td_dYUiiRIjgEztasd7ZxtbGD7T3w7-soaY-op5nD847H8xDykbMlZ4LfgE1LDz5MmPOy7plkqnlDrngtWaW7Trx96Vt1Sd6n9MgY62TNLsil0IorLtgVOWznOIJFugqQnX8o1accwflM136YLQ50i9NY3blkdxAfjkwY6dZNzgZPf5YNDhCzsxMmCone-jCUbgyRblzeuXlP14X7CjljdJg-kHcjTAmvz3VB_nz_9nv1o9r8ul-vbjcVqEblijedBAm6r2uslR2RadEq2w19q3upWi1H7AEYaiXHRtdtIzUMvRC8lX3HrVyQz6e5IWVnknUZ7a5s7NFmw4WSrEQW5MsJOsTwd8aUzb58E6cJPIY5Gd40TPJyTf0KVAjFOy7bgqoTamNIKeJoDtHtIf4znJmjO1PcmWd35uyuxD6dX5j7PQ4voWdZBWAn4Bh_DHP05YD_n_kE2aCosQ</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>Luo, Langli</creator><creator>Zhao, Peng</creator><creator>Yang, Hui</creator><creator>Liu, Borui</creator><creator>Zhang, Ji-Guang</creator><creator>Cui, Yi</creator><creator>Yu, Guihua</creator><creator>Zhang, Sulin</creator><creator>Wang, Chong-Min</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151014</creationdate><title>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</title><author>Luo, Langli ; Zhao, Peng ; Yang, Hui ; Liu, Borui ; Zhang, Ji-Guang ; Cui, Yi ; Yu, Guihua ; Zhang, Sulin ; Wang, Chong-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Coating</topic><topic>Coatings</topic><topic>Lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Zhang, Sulin</creatorcontrib><creatorcontrib>Wang, Chong-Min</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Langli</au><au>Zhao, Peng</au><au>Yang, Hui</au><au>Liu, Borui</au><au>Zhang, Ji-Guang</au><au>Cui, Yi</au><au>Yu, Guihua</au><au>Zhang, Sulin</au><au>Wang, Chong-Min</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-10-14</date><risdate>2015</risdate><volume>15</volume><issue>10</issue><spage>7016</spage><epage>7022</epage><pages>7016-7022</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemi-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemi-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ∼150 nm for bare SiNPs to ∼380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26414120</pmid><doi>10.1021/acs.nanolett.5b03047</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2015-10, Vol.15 (10), p.7016-7022 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1243087 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anodes Coating Coatings Lithium-ion batteries Nanoparticles Nanostructure Rechargeable batteries Silicon |
title | Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Coating%20Constraint%20Induced%20Self-Discharging%20of%20Silicon%20Nanoparticles%20as%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Nano%20letters&rft.au=Luo,%20Langli&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2015-10-14&rft.volume=15&rft.issue=10&rft.spage=7016&rft.epage=7022&rft.pages=7016-7022&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b03047&rft_dat=%3Cproquest_osti_%3E1722419138%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a474t-1793a3a6b55e54cfe06284c9db86b34863febaa0e643f7658736adb22183b91c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722419138&rft_id=info:pmid/26414120&rfr_iscdi=true |