Loading…

Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties

The optical properties of three sets of InGaAs/GaAs multiple quantum well (MQW) structures grown by molecular beam epitaxy and previously characterized by x-ray diffraction for crystal perfection were investigated. The correlations between growth conditions, crystal defects, and optical properties a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2015-09, Vol.425 (C), p.49-53
Main Authors: Karow, Matthias M., Faleev, Nikolai N., Maros, Aymeric, Honsberg, Christiana B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963
cites cdi_FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963
container_end_page 53
container_issue C
container_start_page 49
container_title Journal of crystal growth
container_volume 425
creator Karow, Matthias M.
Faleev, Nikolai N.
Maros, Aymeric
Honsberg, Christiana B.
description The optical properties of three sets of InGaAs/GaAs multiple quantum well (MQW) structures grown by molecular beam epitaxy and previously characterized by x-ray diffraction for crystal perfection were investigated. The correlations between growth conditions, crystal defects, and optical properties are discussed. Evaluation of the relative importance of non-radiative Shockley-Read-Hall (SRH) recombination was carried out according to a method presented herein. The optimal deposition temperature was determined based on both proper carrier confinement in the nanostructures and the least non-radiative recombination. Growing below this temperature increased SRH-recombination whereas higher growth temperatures led to carrier localization in local band edge minima. Varying the MQW periodicity and MQW period allowed the study of their effects on the strength of SRH-recombination. MQW periodicity results are explained in the frame of a cumulative deterioration effect with continued epitaxial growth, while MQW period data shows correlations between relaxation of the initial elastic stress and SRH-strength. Limitations of the underlying model for SRH-analysis are pointed out. •Optical properties affected by crystalline defects created in InGaAs MQWs.•A model, proposed for evaluation of Shockley-Read-Hall recombination strength.•Optimal deposition temperature inferred from SRH strength and carrier confinement.•Carrier localization in random band edge minima above optimal deposition temperature.•Primarily crystalline defects created for stress relaxation affect SRH-recombination.
doi_str_mv 10.1016/j.jcrysgro.2015.03.048
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1246382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024815002729</els_id><sourcerecordid>1762110433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963</originalsourceid><addsrcrecordid>eNqFkMFO3DAURS1UJKaUX0BWV2wSnu1MnOyKpjCNRDUggVhaHucFPMrEwXaQ2PEP_cN-SR1Nu-7mvc29V_ceQs4Z5AxYebnLd8a_h2fvcg5smYPIoaiOyIJVUmRLAP6JLNLlGfCiOiGfQ9gBJCeDBbn7jh2aSFcedbRuoHagzbDWV-FyPvTn1Ec79kjvJz3EaU-fsO8D_f3xizZNTjdjtEb39M67EX20GL6Q4073Ac_-_lPyeHP9sPqR3W7WzerqNjNFDTHbCmw7bCspa4m6rXVRi6qShiMzS1FoKQ1st22dyvGybBHkspQdhxbRFLouxSn5esh1IVoVjI1oXowbhrRGMV6UouJJdHEQjd69Thii2ttg0gI9oJuCYrLkjEEhRJKWB6nxLgSPnRq93Wv_rhiombPaqX-c1cxZgVCJczJ-OxgxrX2z6OcyOBhsrZ-7tM7-L-IP5HaKUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762110433</pqid></control><display><type>article</type><title>Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties</title><source>ScienceDirect Freedom Collection</source><creator>Karow, Matthias M. ; Faleev, Nikolai N. ; Maros, Aymeric ; Honsberg, Christiana B.</creator><creatorcontrib>Karow, Matthias M. ; Faleev, Nikolai N. ; Maros, Aymeric ; Honsberg, Christiana B.</creatorcontrib><description>The optical properties of three sets of InGaAs/GaAs multiple quantum well (MQW) structures grown by molecular beam epitaxy and previously characterized by x-ray diffraction for crystal perfection were investigated. The correlations between growth conditions, crystal defects, and optical properties are discussed. Evaluation of the relative importance of non-radiative Shockley-Read-Hall (SRH) recombination was carried out according to a method presented herein. The optimal deposition temperature was determined based on both proper carrier confinement in the nanostructures and the least non-radiative recombination. Growing below this temperature increased SRH-recombination whereas higher growth temperatures led to carrier localization in local band edge minima. Varying the MQW periodicity and MQW period allowed the study of their effects on the strength of SRH-recombination. MQW periodicity results are explained in the frame of a cumulative deterioration effect with continued epitaxial growth, while MQW period data shows correlations between relaxation of the initial elastic stress and SRH-strength. Limitations of the underlying model for SRH-analysis are pointed out. •Optical properties affected by crystalline defects created in InGaAs MQWs.•A model, proposed for evaluation of Shockley-Read-Hall recombination strength.•Optimal deposition temperature inferred from SRH strength and carrier confinement.•Carrier localization in random band edge minima above optimal deposition temperature.•Primarily crystalline defects created for stress relaxation affect SRH-recombination.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2015.03.048</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A1. Defects ; A1. Nanostructures ; A1. Photoluminescence spectroscopy ; A3. Molecular beam epitaxy ; A3. Superlattices ; B2. Indium gallium arsenide ; Carriers ; Correlation ; Crystal defects ; Gallium arsenide ; Gallium arsenides ; Nanostructure ; Optical properties ; Quantum wells</subject><ispartof>Journal of crystal growth, 2015-09, Vol.425 (C), p.49-53</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963</citedby><cites>FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963</cites><orcidid>0000-0002-8259-5575 ; 0000000282595575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1246382$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karow, Matthias M.</creatorcontrib><creatorcontrib>Faleev, Nikolai N.</creatorcontrib><creatorcontrib>Maros, Aymeric</creatorcontrib><creatorcontrib>Honsberg, Christiana B.</creatorcontrib><title>Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties</title><title>Journal of crystal growth</title><description>The optical properties of three sets of InGaAs/GaAs multiple quantum well (MQW) structures grown by molecular beam epitaxy and previously characterized by x-ray diffraction for crystal perfection were investigated. The correlations between growth conditions, crystal defects, and optical properties are discussed. Evaluation of the relative importance of non-radiative Shockley-Read-Hall (SRH) recombination was carried out according to a method presented herein. The optimal deposition temperature was determined based on both proper carrier confinement in the nanostructures and the least non-radiative recombination. Growing below this temperature increased SRH-recombination whereas higher growth temperatures led to carrier localization in local band edge minima. Varying the MQW periodicity and MQW period allowed the study of their effects on the strength of SRH-recombination. MQW periodicity results are explained in the frame of a cumulative deterioration effect with continued epitaxial growth, while MQW period data shows correlations between relaxation of the initial elastic stress and SRH-strength. Limitations of the underlying model for SRH-analysis are pointed out. •Optical properties affected by crystalline defects created in InGaAs MQWs.•A model, proposed for evaluation of Shockley-Read-Hall recombination strength.•Optimal deposition temperature inferred from SRH strength and carrier confinement.•Carrier localization in random band edge minima above optimal deposition temperature.•Primarily crystalline defects created for stress relaxation affect SRH-recombination.</description><subject>A1. Defects</subject><subject>A1. Nanostructures</subject><subject>A1. Photoluminescence spectroscopy</subject><subject>A3. Molecular beam epitaxy</subject><subject>A3. Superlattices</subject><subject>B2. Indium gallium arsenide</subject><subject>Carriers</subject><subject>Correlation</subject><subject>Crystal defects</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Quantum wells</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAURS1UJKaUX0BWV2wSnu1MnOyKpjCNRDUggVhaHucFPMrEwXaQ2PEP_cN-SR1Nu-7mvc29V_ceQs4Z5AxYebnLd8a_h2fvcg5smYPIoaiOyIJVUmRLAP6JLNLlGfCiOiGfQ9gBJCeDBbn7jh2aSFcedbRuoHagzbDWV-FyPvTn1Ec79kjvJz3EaU-fsO8D_f3xizZNTjdjtEb39M67EX20GL6Q4073Ac_-_lPyeHP9sPqR3W7WzerqNjNFDTHbCmw7bCspa4m6rXVRi6qShiMzS1FoKQ1st22dyvGybBHkspQdhxbRFLouxSn5esh1IVoVjI1oXowbhrRGMV6UouJJdHEQjd69Thii2ttg0gI9oJuCYrLkjEEhRJKWB6nxLgSPnRq93Wv_rhiombPaqX-c1cxZgVCJczJ-OxgxrX2z6OcyOBhsrZ-7tM7-L-IP5HaKUg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Karow, Matthias M.</creator><creator>Faleev, Nikolai N.</creator><creator>Maros, Aymeric</creator><creator>Honsberg, Christiana B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8259-5575</orcidid><orcidid>https://orcid.org/0000000282595575</orcidid></search><sort><creationdate>20150901</creationdate><title>Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties</title><author>Karow, Matthias M. ; Faleev, Nikolai N. ; Maros, Aymeric ; Honsberg, Christiana B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A1. Defects</topic><topic>A1. Nanostructures</topic><topic>A1. Photoluminescence spectroscopy</topic><topic>A3. Molecular beam epitaxy</topic><topic>A3. Superlattices</topic><topic>B2. Indium gallium arsenide</topic><topic>Carriers</topic><topic>Correlation</topic><topic>Crystal defects</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Quantum wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karow, Matthias M.</creatorcontrib><creatorcontrib>Faleev, Nikolai N.</creatorcontrib><creatorcontrib>Maros, Aymeric</creatorcontrib><creatorcontrib>Honsberg, Christiana B.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karow, Matthias M.</au><au>Faleev, Nikolai N.</au><au>Maros, Aymeric</au><au>Honsberg, Christiana B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties</atitle><jtitle>Journal of crystal growth</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>425</volume><issue>C</issue><spage>49</spage><epage>53</epage><pages>49-53</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>The optical properties of three sets of InGaAs/GaAs multiple quantum well (MQW) structures grown by molecular beam epitaxy and previously characterized by x-ray diffraction for crystal perfection were investigated. The correlations between growth conditions, crystal defects, and optical properties are discussed. Evaluation of the relative importance of non-radiative Shockley-Read-Hall (SRH) recombination was carried out according to a method presented herein. The optimal deposition temperature was determined based on both proper carrier confinement in the nanostructures and the least non-radiative recombination. Growing below this temperature increased SRH-recombination whereas higher growth temperatures led to carrier localization in local band edge minima. Varying the MQW periodicity and MQW period allowed the study of their effects on the strength of SRH-recombination. MQW periodicity results are explained in the frame of a cumulative deterioration effect with continued epitaxial growth, while MQW period data shows correlations between relaxation of the initial elastic stress and SRH-strength. Limitations of the underlying model for SRH-analysis are pointed out. •Optical properties affected by crystalline defects created in InGaAs MQWs.•A model, proposed for evaluation of Shockley-Read-Hall recombination strength.•Optimal deposition temperature inferred from SRH strength and carrier confinement.•Carrier localization in random band edge minima above optimal deposition temperature.•Primarily crystalline defects created for stress relaxation affect SRH-recombination.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2015.03.048</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8259-5575</orcidid><orcidid>https://orcid.org/0000000282595575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2015-09, Vol.425 (C), p.49-53
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_1246382
source ScienceDirect Freedom Collection
subjects A1. Defects
A1. Nanostructures
A1. Photoluminescence spectroscopy
A3. Molecular beam epitaxy
A3. Superlattices
B2. Indium gallium arsenide
Carriers
Correlation
Crystal defects
Gallium arsenide
Gallium arsenides
Nanostructure
Optical properties
Quantum wells
title Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Creation%20in%20InGaAs/GaAs%20Multiple%20Quantum%20Wells%20%E2%80%93%20II.%20Optical%20Properties&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Karow,%20Matthias%20M.&rft.date=2015-09-01&rft.volume=425&rft.issue=C&rft.spage=49&rft.epage=53&rft.pages=49-53&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2015.03.048&rft_dat=%3Cproquest_osti_%3E1762110433%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-b3edfed87797ead9a493887c2e1c534a77c0bbd9fec266de07567f20deec4a963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762110433&rft_id=info:pmid/&rfr_iscdi=true