Loading…
Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection
Uniform zirconium-based porphyrin metal–organic framework (MOF-525) thin films are grown on conducting glass substrates by using a solvothermal approach. The obtained MOF-525 thin film is electrochemically addressable in aqueous solution and shows electrocatalytic activity for nitrite oxidation. The...
Saved in:
Published in: | Electrochemistry communications 2015-09, Vol.58 (C), p.51-56 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uniform zirconium-based porphyrin metal–organic framework (MOF-525) thin films are grown on conducting glass substrates by using a solvothermal approach. The obtained MOF-525 thin film is electrochemically addressable in aqueous solution and shows electrocatalytic activity for nitrite oxidation. The mechanism for the electrocatalytic oxidation of nitrite at the MOF-525 thin film is investigated by cyclic voltammetry. The redox mechanism of the MOF-525 thin film in the KCl aqueous solution is studied by amperometry. The MOF-525 thin film is deployed as an amperometric nitrite sensor. The linear range, sensitivity, and limit of detection are 20–800μM, 95μA/mM-cm2, and 2.1μM, respectively.
[Display omitted]
•Zirconium-based porphyrin MOF thin films are grown on conducting substrates.•The MOF-525 thin film shows electrocatalytic activity for nitrite oxidation.•Redox and electrocatalytic mechanisms of the MOF thin film are investigated.•The amperometric nitrite sensor using MOF-525 thin film is successfully developed. |
---|---|
ISSN: | 1388-2481 1873-1902 |
DOI: | 10.1016/j.elecom.2015.06.003 |