Loading…
Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials
Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolu...
Saved in:
Published in: | Journal of computational physics 2010-12, Vol.229 (24), p.9119-9134 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513 |
container_end_page | 9134 |
container_issue | 24 |
container_start_page | 9119 |
container_title | Journal of computational physics |
container_volume | 229 |
creator | Vikram, M. Baczewski, A. Shanker, B. Kempel, L. |
description | Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as
O
N
s
2
N
t
2
, where
N
s
and
N
t
are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as
O
(
N
s
N
t
log
2
N
t
)
. Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here. |
doi_str_mv | 10.1016/j.jcp.2010.08.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1252698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110004729</els_id><sourcerecordid>856790520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMoOK4-gLcgiC5sj0m6k07jaRjWVVzwoueQP9Vsxp6kTTKz7s3TvoBv6JOYZhaPnooiv-9LVX0IvaRkTQkV73brnZ3XjNSeyDVh_BFaUTKQhvVUPEYrQhhthmGgT9GznHeEEMk7uUL3G2thgqQLOLzVqUD2OmD4OeuQfQz47WZ7eY6NzvV9THoPtzF9x2NMuNwATnr2DsNRTwddFjyO2PlxPCzaCzzFnO_wrT7CBdbB4c8T-PDn1--rmFyF51ggFK-n_Bw9GWuBFw_1DH37cPl1-7G5_nL1abu5bmwrRWl62XddRxxQxseOMmrqxsIQY7i0uhtob9igHadUApXOuW7gpjfGtVwC57Q9Q69OvjEXr7L1BeyNjSGALaqaMjHICr05QXOKPw6Qi9r7XK806QDxkJXkoh8IZ6SS9ETaVDdNMKo5-b1Od4oSteSidqrmopZcFJGq5lI1rx_cdbZ6qjcN1ud_Qta2vBdCVO79iYN6j6OHtIwLwYLzaZnWRf-fX_4C-SSj1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856790520</pqid></control><display><type>article</type><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L.</creator><creatorcontrib>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as
O
N
s
2
N
t
2
, where
N
s
and
N
t
are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as
O
(
N
s
N
t
log
2
N
t
)
. Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.08.025</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Accelerated Cartesian expansion (ACE) ; Algorithms ; Block-Toeplitz ; Cartesian ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational techniques ; Convolution ; Diffusion ; Exact sciences and technology ; Fast multipole methods ; Lossy wave ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Temporal logic ; Transient</subject><ispartof>Journal of computational physics, 2010-12, Vol.229 (24), p.9119-9134</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</citedby><cites>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23357666$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1252698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vikram, M.</creatorcontrib><creatorcontrib>Baczewski, A.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Kempel, L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><title>Journal of computational physics</title><description>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as
O
N
s
2
N
t
2
, where
N
s
and
N
t
are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as
O
(
N
s
N
t
log
2
N
t
)
. Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</description><subject>Accelerated Cartesian expansion (ACE)</subject><subject>Algorithms</subject><subject>Block-Toeplitz</subject><subject>Cartesian</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational techniques</subject><subject>Convolution</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fast multipole methods</subject><subject>Lossy wave</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Temporal logic</subject><subject>Transient</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kc-KFDEQxoMoOK4-gLcgiC5sj0m6k07jaRjWVVzwoueQP9Vsxp6kTTKz7s3TvoBv6JOYZhaPnooiv-9LVX0IvaRkTQkV73brnZ3XjNSeyDVh_BFaUTKQhvVUPEYrQhhthmGgT9GznHeEEMk7uUL3G2thgqQLOLzVqUD2OmD4OeuQfQz47WZ7eY6NzvV9THoPtzF9x2NMuNwATnr2DsNRTwddFjyO2PlxPCzaCzzFnO_wrT7CBdbB4c8T-PDn1--rmFyF51ggFK-n_Bw9GWuBFw_1DH37cPl1-7G5_nL1abu5bmwrRWl62XddRxxQxseOMmrqxsIQY7i0uhtob9igHadUApXOuW7gpjfGtVwC57Q9Q69OvjEXr7L1BeyNjSGALaqaMjHICr05QXOKPw6Qi9r7XK806QDxkJXkoh8IZ6SS9ETaVDdNMKo5-b1Od4oSteSidqrmopZcFJGq5lI1rx_cdbZ6qjcN1ud_Qta2vBdCVO79iYN6j6OHtIwLwYLzaZnWRf-fX_4C-SSj1A</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Vikram, M.</creator><creator>Baczewski, A.</creator><creator>Shanker, B.</creator><creator>Kempel, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20101210</creationdate><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><author>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accelerated Cartesian expansion (ACE)</topic><topic>Algorithms</topic><topic>Block-Toeplitz</topic><topic>Cartesian</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational techniques</topic><topic>Convolution</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fast multipole methods</topic><topic>Lossy wave</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Temporal logic</topic><topic>Transient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vikram, M.</creatorcontrib><creatorcontrib>Baczewski, A.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Kempel, L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vikram, M.</au><au>Baczewski, A.</au><au>Shanker, B.</au><au>Kempel, L.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</atitle><jtitle>Journal of computational physics</jtitle><date>2010-12-10</date><risdate>2010</risdate><volume>229</volume><issue>24</issue><spage>9119</spage><epage>9134</epage><pages>9119-9134</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as
O
N
s
2
N
t
2
, where
N
s
and
N
t
are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as
O
(
N
s
N
t
log
2
N
t
)
. Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.08.025</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2010-12, Vol.229 (24), p.9119-9134 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1252698 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Accelerated Cartesian expansion (ACE) Algorithms Block-Toeplitz Cartesian CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computational techniques Convolution Diffusion Exact sciences and technology Fast multipole methods Lossy wave Mathematical analysis Mathematical methods in physics Mathematical models Physics Temporal logic Transient |
title | Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Cartesian%20expansion%20(ACE)%20based%20framework%20for%20the%20rapid%20evaluation%20of%20diffusion,%20lossy%20wave,%20and%20Klein%E2%80%93Gordon%20potentials&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vikram,%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2010-12-10&rft.volume=229&rft.issue=24&rft.spage=9119&rft.epage=9134&rft.pages=9119-9134&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.08.025&rft_dat=%3Cproquest_osti_%3E856790520%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856790520&rft_id=info:pmid/&rfr_iscdi=true |