Loading…

Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials

Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2010-12, Vol.229 (24), p.9119-9134
Main Authors: Vikram, M., Baczewski, A., Shanker, B., Kempel, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513
cites cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513
container_end_page 9134
container_issue 24
container_start_page 9119
container_title Journal of computational physics
container_volume 229
creator Vikram, M.
Baczewski, A.
Shanker, B.
Kempel, L.
description Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O N s 2 N t 2 , where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O ( N s N t log 2 N t ) . Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.
doi_str_mv 10.1016/j.jcp.2010.08.025
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1252698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110004729</els_id><sourcerecordid>856790520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMoOK4-gLcgiC5sj0m6k07jaRjWVVzwoueQP9Vsxp6kTTKz7s3TvoBv6JOYZhaPnooiv-9LVX0IvaRkTQkV73brnZ3XjNSeyDVh_BFaUTKQhvVUPEYrQhhthmGgT9GznHeEEMk7uUL3G2thgqQLOLzVqUD2OmD4OeuQfQz47WZ7eY6NzvV9THoPtzF9x2NMuNwATnr2DsNRTwddFjyO2PlxPCzaCzzFnO_wrT7CBdbB4c8T-PDn1--rmFyF51ggFK-n_Bw9GWuBFw_1DH37cPl1-7G5_nL1abu5bmwrRWl62XddRxxQxseOMmrqxsIQY7i0uhtob9igHadUApXOuW7gpjfGtVwC57Q9Q69OvjEXr7L1BeyNjSGALaqaMjHICr05QXOKPw6Qi9r7XK806QDxkJXkoh8IZ6SS9ETaVDdNMKo5-b1Od4oSteSidqrmopZcFJGq5lI1rx_cdbZ6qjcN1ud_Qta2vBdCVO79iYN6j6OHtIwLwYLzaZnWRf-fX_4C-SSj1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856790520</pqid></control><display><type>article</type><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L.</creator><creatorcontrib>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O N s 2 N t 2 , where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O ( N s N t log 2 N t ) . Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.08.025</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Accelerated Cartesian expansion (ACE) ; Algorithms ; Block-Toeplitz ; Cartesian ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational techniques ; Convolution ; Diffusion ; Exact sciences and technology ; Fast multipole methods ; Lossy wave ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Temporal logic ; Transient</subject><ispartof>Journal of computational physics, 2010-12, Vol.229 (24), p.9119-9134</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</citedby><cites>FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23357666$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1252698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vikram, M.</creatorcontrib><creatorcontrib>Baczewski, A.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Kempel, L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><title>Journal of computational physics</title><description>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O N s 2 N t 2 , where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O ( N s N t log 2 N t ) . Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</description><subject>Accelerated Cartesian expansion (ACE)</subject><subject>Algorithms</subject><subject>Block-Toeplitz</subject><subject>Cartesian</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational techniques</subject><subject>Convolution</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fast multipole methods</subject><subject>Lossy wave</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Temporal logic</subject><subject>Transient</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kc-KFDEQxoMoOK4-gLcgiC5sj0m6k07jaRjWVVzwoueQP9Vsxp6kTTKz7s3TvoBv6JOYZhaPnooiv-9LVX0IvaRkTQkV73brnZ3XjNSeyDVh_BFaUTKQhvVUPEYrQhhthmGgT9GznHeEEMk7uUL3G2thgqQLOLzVqUD2OmD4OeuQfQz47WZ7eY6NzvV9THoPtzF9x2NMuNwATnr2DsNRTwddFjyO2PlxPCzaCzzFnO_wrT7CBdbB4c8T-PDn1--rmFyF51ggFK-n_Bw9GWuBFw_1DH37cPl1-7G5_nL1abu5bmwrRWl62XddRxxQxseOMmrqxsIQY7i0uhtob9igHadUApXOuW7gpjfGtVwC57Q9Q69OvjEXr7L1BeyNjSGALaqaMjHICr05QXOKPw6Qi9r7XK806QDxkJXkoh8IZ6SS9ETaVDdNMKo5-b1Od4oSteSidqrmopZcFJGq5lI1rx_cdbZ6qjcN1ud_Qta2vBdCVO79iYN6j6OHtIwLwYLzaZnWRf-fX_4C-SSj1A</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Vikram, M.</creator><creator>Baczewski, A.</creator><creator>Shanker, B.</creator><creator>Kempel, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20101210</creationdate><title>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</title><author>Vikram, M. ; Baczewski, A. ; Shanker, B. ; Kempel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accelerated Cartesian expansion (ACE)</topic><topic>Algorithms</topic><topic>Block-Toeplitz</topic><topic>Cartesian</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational techniques</topic><topic>Convolution</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fast multipole methods</topic><topic>Lossy wave</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Temporal logic</topic><topic>Transient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vikram, M.</creatorcontrib><creatorcontrib>Baczewski, A.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Kempel, L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vikram, M.</au><au>Baczewski, A.</au><au>Shanker, B.</au><au>Kempel, L.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials</atitle><jtitle>Journal of computational physics</jtitle><date>2010-12-10</date><risdate>2010</risdate><volume>229</volume><issue>24</issue><spage>9119</spage><epage>9134</epage><pages>9119-9134</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O N s 2 N t 2 , where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O ( N s N t log 2 N t ) . Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.08.025</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-12, Vol.229 (24), p.9119-9134
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1252698
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Accelerated Cartesian expansion (ACE)
Algorithms
Block-Toeplitz
Cartesian
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational techniques
Convolution
Diffusion
Exact sciences and technology
Fast multipole methods
Lossy wave
Mathematical analysis
Mathematical methods in physics
Mathematical models
Physics
Temporal logic
Transient
title Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein–Gordon potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Cartesian%20expansion%20(ACE)%20based%20framework%20for%20the%20rapid%20evaluation%20of%20diffusion,%20lossy%20wave,%20and%20Klein%E2%80%93Gordon%20potentials&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vikram,%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2010-12-10&rft.volume=229&rft.issue=24&rft.spage=9119&rft.epage=9134&rft.pages=9119-9134&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.08.025&rft_dat=%3Cproquest_osti_%3E856790520%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-7874440de125f4121b2016b0bb58ca4917b29ad5118e18ddd495b7bbd358e5513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856790520&rft_id=info:pmid/&rfr_iscdi=true