Loading…
Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooli...
Saved in:
Published in: | Journal of the American Ceramic Society 2016-11, Vol.99 (11), p.3726-3733 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603 |
---|---|
cites | cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603 |
container_end_page | 3733 |
container_issue | 11 |
container_start_page | 3726 |
container_title | Journal of the American Ceramic Society |
container_volume | 99 |
creator | Rodriguez, Mark A. Griego, James J. M. Dai, Steve |
description | The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics. |
doi_str_mv | 10.1111/jace.14438 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1253125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864563688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</originalsourceid><addsrcrecordid>eNp90UGLEzEYBuAgCtbqxV8Q9CLirMlkksl4W4bdbqWuha56DN-kiU1NZ7pJylp__aY76sGDgfAReN7Ax4vQS0rOaD7vt6DNGa0qJh-hCeWcFmVDxWM0IYSURS1L8hQ9i3Gbn7SR1QTtVwa867_jmYcYi9YE2Dkd8Z1LG3xtIBQL1-eBbzYm7MDjVQrg-nd4CSHh-fwDXpnbg-m1wYPFbTjGBN67X5Dc0GPo13i5gWhyDDrnXTo-R08s-Ghe_J5T9OXy4qa9KhafZ_P2fFFoTrgsbC2hpJxVzZrptZWWd50uQTaMcltZy7hpurpe01KUAjjrSLcGKwmTjQQrCJuiV-O_Q0xORe2S0Rs99L3RSdGSs9Odojcj2ochbxGT2rmojffQm-EQFZWi4oIJKTN9_Q_dDofQ5xWyYpwxKcoqq7ej0mGIMRir9sHtIBwVJerUkDo1pB4aypiO-M55c_yPVB_P24s_mWLMuJjMz78ZCD-UqFnN1bfrmaKzy6X4-mmhrtg9q5Gg6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835338624</pqid></control><display><type>article</type><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><source>Wiley</source><creator>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve</creator><contributor>Wei, W.-C. ; Wei, W.‐C.</contributor><creatorcontrib>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Wei, W.-C. ; Wei, W.‐C.</creatorcontrib><description>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14438</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Ceramics ; Cristobalite ; Crystallization ; crystals/crystallization ; Diffraction ; Glass ceramics ; Heat treatment ; Inversions ; MATERIALS SCIENCE ; Phase stability ; phase transformations ; Phase transitions ; Quartz ; Sealing ; thermal expansion ; thermal treatment ; X-ray methods</subject><ispartof>Journal of the American Ceramic Society, 2016-11, Vol.99 (11), p.3726-3733</ispartof><rights>Published 2016. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</citedby><cites>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1253125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Wei, W.-C.</contributor><contributor>Wei, W.‐C.</contributor><creatorcontrib>Rodriguez, Mark A.</creatorcontrib><creatorcontrib>Griego, James J. M.</creatorcontrib><creatorcontrib>Dai, Steve</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</description><subject>Ceramics</subject><subject>Cristobalite</subject><subject>Crystallization</subject><subject>crystals/crystallization</subject><subject>Diffraction</subject><subject>Glass ceramics</subject><subject>Heat treatment</subject><subject>Inversions</subject><subject>MATERIALS SCIENCE</subject><subject>Phase stability</subject><subject>phase transformations</subject><subject>Phase transitions</subject><subject>Quartz</subject><subject>Sealing</subject><subject>thermal expansion</subject><subject>thermal treatment</subject><subject>X-ray methods</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90UGLEzEYBuAgCtbqxV8Q9CLirMlkksl4W4bdbqWuha56DN-kiU1NZ7pJylp__aY76sGDgfAReN7Ax4vQS0rOaD7vt6DNGa0qJh-hCeWcFmVDxWM0IYSURS1L8hQ9i3Gbn7SR1QTtVwa867_jmYcYi9YE2Dkd8Z1LG3xtIBQL1-eBbzYm7MDjVQrg-nd4CSHh-fwDXpnbg-m1wYPFbTjGBN67X5Dc0GPo13i5gWhyDDrnXTo-R08s-Ghe_J5T9OXy4qa9KhafZ_P2fFFoTrgsbC2hpJxVzZrptZWWd50uQTaMcltZy7hpurpe01KUAjjrSLcGKwmTjQQrCJuiV-O_Q0xORe2S0Rs99L3RSdGSs9Odojcj2ochbxGT2rmojffQm-EQFZWi4oIJKTN9_Q_dDofQ5xWyYpwxKcoqq7ej0mGIMRir9sHtIBwVJerUkDo1pB4aypiO-M55c_yPVB_P24s_mWLMuJjMz78ZCD-UqFnN1bfrmaKzy6X4-mmhrtg9q5Gg6A</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Rodriguez, Mark A.</creator><creator>Griego, James J. M.</creator><creator>Dai, Steve</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201611</creationdate><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><author>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ceramics</topic><topic>Cristobalite</topic><topic>Crystallization</topic><topic>crystals/crystallization</topic><topic>Diffraction</topic><topic>Glass ceramics</topic><topic>Heat treatment</topic><topic>Inversions</topic><topic>MATERIALS SCIENCE</topic><topic>Phase stability</topic><topic>phase transformations</topic><topic>Phase transitions</topic><topic>Quartz</topic><topic>Sealing</topic><topic>thermal expansion</topic><topic>thermal treatment</topic><topic>X-ray methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Mark A.</creatorcontrib><creatorcontrib>Griego, James J. M.</creatorcontrib><creatorcontrib>Dai, Steve</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Mark A.</au><au>Griego, James J. M.</au><au>Dai, Steve</au><au>Wei, W.-C.</au><au>Wei, W.‐C.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-11</date><risdate>2016</risdate><volume>99</volume><issue>11</issue><spage>3726</spage><epage>3733</epage><pages>3726-3733</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14438</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2016-11, Vol.99 (11), p.3726-3733 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_1253125 |
source | Wiley |
subjects | Ceramics Cristobalite Crystallization crystals/crystallization Diffraction Glass ceramics Heat treatment Inversions MATERIALS SCIENCE Phase stability phase transformations Phase transitions Quartz Sealing thermal expansion thermal treatment X-ray methods |
title | Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sealing%20Glass-Ceramics%20with%20Near-Linear%20Thermal%20Strain,%20Part%20II:%20Sequence%20of%20Crystallization%20and%20Phase%20Stability&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Rodriguez,%20Mark%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-11&rft.volume=99&rft.issue=11&rft.spage=3726&rft.epage=3733&rft.pages=3726-3733&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14438&rft_dat=%3Cproquest_osti_%3E1864563688%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835338624&rft_id=info:pmid/&rfr_iscdi=true |