Loading…

Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability

The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooli...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2016-11, Vol.99 (11), p.3726-3733
Main Authors: Rodriguez, Mark A., Griego, James J. M., Dai, Steve
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603
cites cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603
container_end_page 3733
container_issue 11
container_start_page 3726
container_title Journal of the American Ceramic Society
container_volume 99
creator Rodriguez, Mark A.
Griego, James J. M.
Dai, Steve
description The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.
doi_str_mv 10.1111/jace.14438
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1253125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864563688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</originalsourceid><addsrcrecordid>eNp90UGLEzEYBuAgCtbqxV8Q9CLirMlkksl4W4bdbqWuha56DN-kiU1NZ7pJylp__aY76sGDgfAReN7Ax4vQS0rOaD7vt6DNGa0qJh-hCeWcFmVDxWM0IYSURS1L8hQ9i3Gbn7SR1QTtVwa867_jmYcYi9YE2Dkd8Z1LG3xtIBQL1-eBbzYm7MDjVQrg-nd4CSHh-fwDXpnbg-m1wYPFbTjGBN67X5Dc0GPo13i5gWhyDDrnXTo-R08s-Ghe_J5T9OXy4qa9KhafZ_P2fFFoTrgsbC2hpJxVzZrptZWWd50uQTaMcltZy7hpurpe01KUAjjrSLcGKwmTjQQrCJuiV-O_Q0xORe2S0Rs99L3RSdGSs9Odojcj2ochbxGT2rmojffQm-EQFZWi4oIJKTN9_Q_dDofQ5xWyYpwxKcoqq7ej0mGIMRir9sHtIBwVJerUkDo1pB4aypiO-M55c_yPVB_P24s_mWLMuJjMz78ZCD-UqFnN1bfrmaKzy6X4-mmhrtg9q5Gg6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835338624</pqid></control><display><type>article</type><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><source>Wiley</source><creator>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve</creator><contributor>Wei, W.-C. ; Wei, W.‐C.</contributor><creatorcontrib>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Wei, W.-C. ; Wei, W.‐C.</creatorcontrib><description>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14438</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Ceramics ; Cristobalite ; Crystallization ; crystals/crystallization ; Diffraction ; Glass ceramics ; Heat treatment ; Inversions ; MATERIALS SCIENCE ; Phase stability ; phase transformations ; Phase transitions ; Quartz ; Sealing ; thermal expansion ; thermal treatment ; X-ray methods</subject><ispartof>Journal of the American Ceramic Society, 2016-11, Vol.99 (11), p.3726-3733</ispartof><rights>Published 2016. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</citedby><cites>FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1253125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Wei, W.-C.</contributor><contributor>Wei, W.‐C.</contributor><creatorcontrib>Rodriguez, Mark A.</creatorcontrib><creatorcontrib>Griego, James J. M.</creatorcontrib><creatorcontrib>Dai, Steve</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</description><subject>Ceramics</subject><subject>Cristobalite</subject><subject>Crystallization</subject><subject>crystals/crystallization</subject><subject>Diffraction</subject><subject>Glass ceramics</subject><subject>Heat treatment</subject><subject>Inversions</subject><subject>MATERIALS SCIENCE</subject><subject>Phase stability</subject><subject>phase transformations</subject><subject>Phase transitions</subject><subject>Quartz</subject><subject>Sealing</subject><subject>thermal expansion</subject><subject>thermal treatment</subject><subject>X-ray methods</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90UGLEzEYBuAgCtbqxV8Q9CLirMlkksl4W4bdbqWuha56DN-kiU1NZ7pJylp__aY76sGDgfAReN7Ax4vQS0rOaD7vt6DNGa0qJh-hCeWcFmVDxWM0IYSURS1L8hQ9i3Gbn7SR1QTtVwa867_jmYcYi9YE2Dkd8Z1LG3xtIBQL1-eBbzYm7MDjVQrg-nd4CSHh-fwDXpnbg-m1wYPFbTjGBN67X5Dc0GPo13i5gWhyDDrnXTo-R08s-Ghe_J5T9OXy4qa9KhafZ_P2fFFoTrgsbC2hpJxVzZrptZWWd50uQTaMcltZy7hpurpe01KUAjjrSLcGKwmTjQQrCJuiV-O_Q0xORe2S0Rs99L3RSdGSs9Odojcj2ochbxGT2rmojffQm-EQFZWi4oIJKTN9_Q_dDofQ5xWyYpwxKcoqq7ej0mGIMRir9sHtIBwVJerUkDo1pB4aypiO-M55c_yPVB_P24s_mWLMuJjMz78ZCD-UqFnN1bfrmaKzy6X4-mmhrtg9q5Gg6A</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Rodriguez, Mark A.</creator><creator>Griego, James J. M.</creator><creator>Dai, Steve</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201611</creationdate><title>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</title><author>Rodriguez, Mark A. ; Griego, James J. M. ; Dai, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ceramics</topic><topic>Cristobalite</topic><topic>Crystallization</topic><topic>crystals/crystallization</topic><topic>Diffraction</topic><topic>Glass ceramics</topic><topic>Heat treatment</topic><topic>Inversions</topic><topic>MATERIALS SCIENCE</topic><topic>Phase stability</topic><topic>phase transformations</topic><topic>Phase transitions</topic><topic>Quartz</topic><topic>Sealing</topic><topic>thermal expansion</topic><topic>thermal treatment</topic><topic>X-ray methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Mark A.</creatorcontrib><creatorcontrib>Griego, James J. M.</creatorcontrib><creatorcontrib>Dai, Steve</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Mark A.</au><au>Griego, James J. M.</au><au>Dai, Steve</au><au>Wei, W.-C.</au><au>Wei, W.‐C.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-11</date><risdate>2016</risdate><volume>99</volume><issue>11</issue><spage>3726</spage><epage>3733</epage><pages>3726-3733</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14438</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2016-11, Vol.99 (11), p.3726-3733
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_1253125
source Wiley
subjects Ceramics
Cristobalite
Crystallization
crystals/crystallization
Diffraction
Glass ceramics
Heat treatment
Inversions
MATERIALS SCIENCE
Phase stability
phase transformations
Phase transitions
Quartz
Sealing
thermal expansion
thermal treatment
X-ray methods
title Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sealing%20Glass-Ceramics%20with%20Near-Linear%20Thermal%20Strain,%20Part%20II:%20Sequence%20of%20Crystallization%20and%20Phase%20Stability&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Rodriguez,%20Mark%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-11&rft.volume=99&rft.issue=11&rft.spage=3726&rft.epage=3733&rft.pages=3726-3733&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14438&rft_dat=%3Cproquest_osti_%3E1864563688%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5058-f78a215349d3cdf8f5bbc2a89315f4ff35e9b77d12626a53b0bdaf803898af603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835338624&rft_id=info:pmid/&rfr_iscdi=true