Loading…

Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging

Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H+ + 2e– ⇆ H2 while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H+/H2 half rea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-01, Vol.134 (3), p.1577-1582
Main Authors: Madden, Christopher, Vaughn, Michael D, Díez-Pérez, Ismael, Brown, Katherine A, King, Paul W, Gust, Devens, Moore, Ana L, Moore, Thomas A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33
cites cdi_FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33
container_end_page 1582
container_issue 3
container_start_page 1577
container_title Journal of the American Chemical Society
container_volume 134
creator Madden, Christopher
Vaughn, Michael D
Díez-Pérez, Ismael
Brown, Katherine A
King, Paul W
Gust, Devens
Moore, Ana L
Moore, Thomas A
description Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H+ + 2e– ⇆ H2 while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H+/H2 half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.
doi_str_mv 10.1021/ja207461t
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1257016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918577487</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33</originalsourceid><addsrcrecordid>eNpt0EFLwzAch-EgipvTg19AiiDioZqkaZIedTg3mHhwnkRClv4zO9pmNq2wb2-kcycvCQkPv8OL0DnBtwRTcrfWFAvGSXuAhiSlOE4J5YdoiDGmsZA8GaAT79fhyagkx2hASUY443yIZmPd6nLbFiZadE3tvqGJnI3eJzCBj3i6zRu3glp7iB7CkUeujl6LelVC_OxKMF0J0azSq_B1io6sLj2c7e4Reps8LsbTeP7yNBvfz2OdMNLGzNI0w1QsbZblAmMhjbQ2kdzmSZJpbVkKIs1EToUEQ7IcMJU5w5wzKcEmyQhd9rvOt4XypmjBfBpX12BaRWgqMOEBXfdo07ivDnyrqsIbKEtdg-u8yohMhWBSBHnTS9M47xuwatMUlW62imD1W1ft6wZ7sVvtlhXke_mXM4CrHmjj1dqFoKHEP0M_A5N-qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918577487</pqid></control><display><type>article</type><title>Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Madden, Christopher ; Vaughn, Michael D ; Díez-Pérez, Ismael ; Brown, Katherine A ; King, Paul W ; Gust, Devens ; Moore, Ana L ; Moore, Thomas A</creator><creatorcontrib>Madden, Christopher ; Vaughn, Michael D ; Díez-Pérez, Ismael ; Brown, Katherine A ; King, Paul W ; Gust, Devens ; Moore, Ana L ; Moore, Thomas A ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H+ + 2e– ⇆ H2 while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H+/H2 half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja207461t</identifier><identifier>PMID: 21916466</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Clostridium acetobutylicum - chemistry ; Clostridium acetobutylicum - enzymology ; Clostridium acetobutylicum - metabolism ; electrochemical ; Electrochemical Techniques ; FeFe ; Hydrogen - metabolism ; hydrogenase ; Hydrogenase - chemistry ; Hydrogenase - metabolism ; Iron - chemistry ; Models, Molecular ; photoelectrochemical</subject><ispartof>Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1577-1582</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33</citedby><cites>FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21916466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1257016$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Vaughn, Michael D</creatorcontrib><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Brown, Katherine A</creatorcontrib><creatorcontrib>King, Paul W</creatorcontrib><creatorcontrib>Gust, Devens</creatorcontrib><creatorcontrib>Moore, Ana L</creatorcontrib><creatorcontrib>Moore, Thomas A</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H+ + 2e– ⇆ H2 while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H+/H2 half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Clostridium acetobutylicum - chemistry</subject><subject>Clostridium acetobutylicum - enzymology</subject><subject>Clostridium acetobutylicum - metabolism</subject><subject>electrochemical</subject><subject>Electrochemical Techniques</subject><subject>FeFe</subject><subject>Hydrogen - metabolism</subject><subject>hydrogenase</subject><subject>Hydrogenase - chemistry</subject><subject>Hydrogenase - metabolism</subject><subject>Iron - chemistry</subject><subject>Models, Molecular</subject><subject>photoelectrochemical</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAch-EgipvTg19AiiDioZqkaZIedTg3mHhwnkRClv4zO9pmNq2wb2-kcycvCQkPv8OL0DnBtwRTcrfWFAvGSXuAhiSlOE4J5YdoiDGmsZA8GaAT79fhyagkx2hASUY443yIZmPd6nLbFiZadE3tvqGJnI3eJzCBj3i6zRu3glp7iB7CkUeujl6LelVC_OxKMF0J0azSq_B1io6sLj2c7e4Reps8LsbTeP7yNBvfz2OdMNLGzNI0w1QsbZblAmMhjbQ2kdzmSZJpbVkKIs1EToUEQ7IcMJU5w5wzKcEmyQhd9rvOt4XypmjBfBpX12BaRWgqMOEBXfdo07ivDnyrqsIbKEtdg-u8yohMhWBSBHnTS9M47xuwatMUlW62imD1W1ft6wZ7sVvtlhXke_mXM4CrHmjj1dqFoKHEP0M_A5N-qw</recordid><startdate>20120125</startdate><enddate>20120125</enddate><creator>Madden, Christopher</creator><creator>Vaughn, Michael D</creator><creator>Díez-Pérez, Ismael</creator><creator>Brown, Katherine A</creator><creator>King, Paul W</creator><creator>Gust, Devens</creator><creator>Moore, Ana L</creator><creator>Moore, Thomas A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120125</creationdate><title>Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging</title><author>Madden, Christopher ; Vaughn, Michael D ; Díez-Pérez, Ismael ; Brown, Katherine A ; King, Paul W ; Gust, Devens ; Moore, Ana L ; Moore, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Clostridium acetobutylicum - chemistry</topic><topic>Clostridium acetobutylicum - enzymology</topic><topic>Clostridium acetobutylicum - metabolism</topic><topic>electrochemical</topic><topic>Electrochemical Techniques</topic><topic>FeFe</topic><topic>Hydrogen - metabolism</topic><topic>hydrogenase</topic><topic>Hydrogenase - chemistry</topic><topic>Hydrogenase - metabolism</topic><topic>Iron - chemistry</topic><topic>Models, Molecular</topic><topic>photoelectrochemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Vaughn, Michael D</creatorcontrib><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Brown, Katherine A</creatorcontrib><creatorcontrib>King, Paul W</creatorcontrib><creatorcontrib>Gust, Devens</creatorcontrib><creatorcontrib>Moore, Ana L</creatorcontrib><creatorcontrib>Moore, Thomas A</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madden, Christopher</au><au>Vaughn, Michael D</au><au>Díez-Pérez, Ismael</au><au>Brown, Katherine A</au><au>King, Paul W</au><au>Gust, Devens</au><au>Moore, Ana L</au><au>Moore, Thomas A</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-01-25</date><risdate>2012</risdate><volume>134</volume><issue>3</issue><spage>1577</spage><epage>1582</epage><pages>1577-1582</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H+ + 2e– ⇆ H2 while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H+/H2 half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21916466</pmid><doi>10.1021/ja207461t</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1577-1582
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1257016
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects BASIC BIOLOGICAL SCIENCES
Clostridium acetobutylicum - chemistry
Clostridium acetobutylicum - enzymology
Clostridium acetobutylicum - metabolism
electrochemical
Electrochemical Techniques
FeFe
Hydrogen - metabolism
hydrogenase
Hydrogenase - chemistry
Hydrogenase - metabolism
Iron - chemistry
Models, Molecular
photoelectrochemical
title Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Turnover%20of%20%5BFeFe%5D-Hydrogenase%20Based%20on%20Single-Molecule%20Imaging&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Madden,%20Christopher&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2012-01-25&rft.volume=134&rft.issue=3&rft.spage=1577&rft.epage=1582&rft.pages=1577-1582&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja207461t&rft_dat=%3Cproquest_osti_%3E918577487%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a341t-4f259027bf99d70078c8ff386fd339aaf45e7597d278ec19de028d4066488ef33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=918577487&rft_id=info:pmid/21916466&rfr_iscdi=true