Loading…
Optical Properties of Fluid Hydrogen at the Transition to a Conducting State
We use fast transient transmission and emission spectroscopies in the pulse laser heated diamond anvil cell to probe the energy-dependent optical properties of hydrogen at pressures of 10-150 GPa and temperatures up to 6000 K. Hydrogen is absorptive at visible to near-infrared wavelengths above a th...
Saved in:
Published in: | Physical review letters 2016-06, Vol.116 (25), p.255501-255501, Article 255501 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use fast transient transmission and emission spectroscopies in the pulse laser heated diamond anvil cell to probe the energy-dependent optical properties of hydrogen at pressures of 10-150 GPa and temperatures up to 6000 K. Hydrogen is absorptive at visible to near-infrared wavelengths above a threshold temperature that decreases from 3000 K at 18 GPa to 1700 K at 110 GPa. Transmission spectra at 2400 K and 141 GPa indicate that the absorptive hydrogen is semiconducting or semimetallic in character, definitively ruling out a first-order insulator-metal transition in the studied pressure range. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.116.255501 |