Loading…

A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning

Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxyge...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2016-08, Vol.16 (8), p.4799-4806
Main Authors: Ryu, Won-Hee, Gittleson, Forrest S, Li, Jinyang, Tong, Xiao, Taylor, André D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3
cites cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3
container_end_page 4806
container_issue 8
container_start_page 4799
container_title Nano letters
container_volume 16
creator Ryu, Won-Hee
Gittleson, Forrest S
Li, Jinyang
Tong, Xiao
Taylor, André D
description Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.
doi_str_mv 10.1021/acs.nanolett.6b00856
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1259486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810867916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wDxCyOHHJYieOYx-rbdlWWrFI0LPlTGZ3XSV2sZ2W_fck2m2PnGaked4ZaR5CPnG24Kzk3yykhbc-9JjzQraMqVq-Iee8rlghtS7fvvZKnJGLlB4YY7qq2XtyVjZVKYUU5yRf0R_4TK8xuZ2nv3K0GXcHug2RbtqE8cn5HV27vHfjQDd_XYd0FcNz3hc3T6Efswue3vmM0cLcJ3qf5sQKw4A5OqBLm21_SJn-DMnNyDT-QN5tbZ_w46lekvvvN7-Xt8V6s7pbXq0LK2qVCwFdKzSIGlSnwZZqqySX2GjWdYqXTVlBzZkVoFVXiarVWrYgALjGpoW2qy7Jl-PekLIzCVxG2EPwHiEbXtZaKDlBX4_QYwx_RkzZDC4B9r31GMZkuOJMyUbzGRVHFGJIKeLWPEY32HgwnJlZipmkmBcp5iRlin0-XRjbAbvX0IuFCWBHYI4_hDH66Sv_3_kP30Cd8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810867916</pqid></control><display><type>article</type><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D</creator><creatorcontrib>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b00856</identifier><identifier>PMID: 27326464</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalytic membrane ; ENERGY STORAGE ; lithium-oxygen batteries ; Lithium−oxygen batteries ; MATERIALS SCIENCE ; nanoparticles ; oxygen evolving catalyst ; product morphology</subject><ispartof>Nano letters, 2016-08, Vol.16 (8), p.4799-4806</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</citedby><cites>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27326464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1259486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryu, Won-Hee</creatorcontrib><creatorcontrib>Gittleson, Forrest S</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Taylor, André D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</description><subject>catalytic membrane</subject><subject>ENERGY STORAGE</subject><subject>lithium-oxygen batteries</subject><subject>Lithium−oxygen batteries</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticles</subject><subject>oxygen evolving catalyst</subject><subject>product morphology</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eoh_wDxCyOHHJYieOYx-rbdlWWrFI0LPlTGZ3XSV2sZ2W_fck2m2PnGaked4ZaR5CPnG24Kzk3yykhbc-9JjzQraMqVq-Iee8rlghtS7fvvZKnJGLlB4YY7qq2XtyVjZVKYUU5yRf0R_4TK8xuZ2nv3K0GXcHug2RbtqE8cn5HV27vHfjQDd_XYd0FcNz3hc3T6Efswue3vmM0cLcJ3qf5sQKw4A5OqBLm21_SJn-DMnNyDT-QN5tbZ_w46lekvvvN7-Xt8V6s7pbXq0LK2qVCwFdKzSIGlSnwZZqqySX2GjWdYqXTVlBzZkVoFVXiarVWrYgALjGpoW2qy7Jl-PekLIzCVxG2EPwHiEbXtZaKDlBX4_QYwx_RkzZDC4B9r31GMZkuOJMyUbzGRVHFGJIKeLWPEY32HgwnJlZipmkmBcp5iRlin0-XRjbAbvX0IuFCWBHYI4_hDH66Sv_3_kP30Cd8g</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Ryu, Won-Hee</creator><creator>Gittleson, Forrest S</creator><creator>Li, Jinyang</creator><creator>Tong, Xiao</creator><creator>Taylor, André D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160810</creationdate><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><author>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>catalytic membrane</topic><topic>ENERGY STORAGE</topic><topic>lithium-oxygen batteries</topic><topic>Lithium−oxygen batteries</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticles</topic><topic>oxygen evolving catalyst</topic><topic>product morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Won-Hee</creatorcontrib><creatorcontrib>Gittleson, Forrest S</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Taylor, André D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Won-Hee</au><au>Gittleson, Forrest S</au><au>Li, Jinyang</au><au>Tong, Xiao</au><au>Taylor, André D</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-08-10</date><risdate>2016</risdate><volume>16</volume><issue>8</issue><spage>4799</spage><epage>4806</epage><pages>4799-4806</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27326464</pmid><doi>10.1021/acs.nanolett.6b00856</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-08, Vol.16 (8), p.4799-4806
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1259486
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects catalytic membrane
ENERGY STORAGE
lithium-oxygen batteries
Lithium−oxygen batteries
MATERIALS SCIENCE
nanoparticles
oxygen evolving catalyst
product morphology
title A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Design%20Strategy%20for%20Observing%20Lithium%20Oxide%20Growth-Evolution%20Interactions%20Using%20Geometric%20Catalyst%20Positioning&rft.jtitle=Nano%20letters&rft.au=Ryu,%20Won-Hee&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-08-10&rft.volume=16&rft.issue=8&rft.spage=4799&rft.epage=4806&rft.pages=4799-4806&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b00856&rft_dat=%3Cproquest_osti_%3E1810867916%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810867916&rft_id=info:pmid/27326464&rfr_iscdi=true