Loading…
A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning
Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxyge...
Saved in:
Published in: | Nano letters 2016-08, Vol.16 (8), p.4799-4806 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3 |
container_end_page | 4806 |
container_issue | 8 |
container_start_page | 4799 |
container_title | Nano letters |
container_volume | 16 |
creator | Ryu, Won-Hee Gittleson, Forrest S Li, Jinyang Tong, Xiao Taylor, André D |
description | Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies. |
doi_str_mv | 10.1021/acs.nanolett.6b00856 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1259486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810867916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wDxCyOHHJYieOYx-rbdlWWrFI0LPlTGZ3XSV2sZ2W_fck2m2PnGaked4ZaR5CPnG24Kzk3yykhbc-9JjzQraMqVq-Iee8rlghtS7fvvZKnJGLlB4YY7qq2XtyVjZVKYUU5yRf0R_4TK8xuZ2nv3K0GXcHug2RbtqE8cn5HV27vHfjQDd_XYd0FcNz3hc3T6Efswue3vmM0cLcJ3qf5sQKw4A5OqBLm21_SJn-DMnNyDT-QN5tbZ_w46lekvvvN7-Xt8V6s7pbXq0LK2qVCwFdKzSIGlSnwZZqqySX2GjWdYqXTVlBzZkVoFVXiarVWrYgALjGpoW2qy7Jl-PekLIzCVxG2EPwHiEbXtZaKDlBX4_QYwx_RkzZDC4B9r31GMZkuOJMyUbzGRVHFGJIKeLWPEY32HgwnJlZipmkmBcp5iRlin0-XRjbAbvX0IuFCWBHYI4_hDH66Sv_3_kP30Cd8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810867916</pqid></control><display><type>article</type><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D</creator><creatorcontrib>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b00856</identifier><identifier>PMID: 27326464</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalytic membrane ; ENERGY STORAGE ; lithium-oxygen batteries ; Lithium−oxygen batteries ; MATERIALS SCIENCE ; nanoparticles ; oxygen evolving catalyst ; product morphology</subject><ispartof>Nano letters, 2016-08, Vol.16 (8), p.4799-4806</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</citedby><cites>FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27326464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1259486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryu, Won-Hee</creatorcontrib><creatorcontrib>Gittleson, Forrest S</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Taylor, André D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</description><subject>catalytic membrane</subject><subject>ENERGY STORAGE</subject><subject>lithium-oxygen batteries</subject><subject>Lithium−oxygen batteries</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticles</subject><subject>oxygen evolving catalyst</subject><subject>product morphology</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eoh_wDxCyOHHJYieOYx-rbdlWWrFI0LPlTGZ3XSV2sZ2W_fck2m2PnGaked4ZaR5CPnG24Kzk3yykhbc-9JjzQraMqVq-Iee8rlghtS7fvvZKnJGLlB4YY7qq2XtyVjZVKYUU5yRf0R_4TK8xuZ2nv3K0GXcHug2RbtqE8cn5HV27vHfjQDd_XYd0FcNz3hc3T6Efswue3vmM0cLcJ3qf5sQKw4A5OqBLm21_SJn-DMnNyDT-QN5tbZ_w46lekvvvN7-Xt8V6s7pbXq0LK2qVCwFdKzSIGlSnwZZqqySX2GjWdYqXTVlBzZkVoFVXiarVWrYgALjGpoW2qy7Jl-PekLIzCVxG2EPwHiEbXtZaKDlBX4_QYwx_RkzZDC4B9r31GMZkuOJMyUbzGRVHFGJIKeLWPEY32HgwnJlZipmkmBcp5iRlin0-XRjbAbvX0IuFCWBHYI4_hDH66Sv_3_kP30Cd8g</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Ryu, Won-Hee</creator><creator>Gittleson, Forrest S</creator><creator>Li, Jinyang</creator><creator>Tong, Xiao</creator><creator>Taylor, André D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160810</creationdate><title>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</title><author>Ryu, Won-Hee ; Gittleson, Forrest S ; Li, Jinyang ; Tong, Xiao ; Taylor, André D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>catalytic membrane</topic><topic>ENERGY STORAGE</topic><topic>lithium-oxygen batteries</topic><topic>Lithium−oxygen batteries</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticles</topic><topic>oxygen evolving catalyst</topic><topic>product morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Won-Hee</creatorcontrib><creatorcontrib>Gittleson, Forrest S</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Taylor, André D</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Won-Hee</au><au>Gittleson, Forrest S</au><au>Li, Jinyang</au><au>Tong, Xiao</au><au>Taylor, André D</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-08-10</date><risdate>2016</risdate><volume>16</volume><issue>8</issue><spage>4799</spage><epage>4806</epage><pages>4799-4806</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Understanding the catalyzed formation and evolution of lithium-oxide products in Li–O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li–O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27326464</pmid><doi>10.1021/acs.nanolett.6b00856</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2016-08, Vol.16 (8), p.4799-4806 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1259486 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | catalytic membrane ENERGY STORAGE lithium-oxygen batteries Lithium−oxygen batteries MATERIALS SCIENCE nanoparticles oxygen evolving catalyst product morphology |
title | A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Design%20Strategy%20for%20Observing%20Lithium%20Oxide%20Growth-Evolution%20Interactions%20Using%20Geometric%20Catalyst%20Positioning&rft.jtitle=Nano%20letters&rft.au=Ryu,%20Won-Hee&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-08-10&rft.volume=16&rft.issue=8&rft.spage=4799&rft.epage=4806&rft.pages=4799-4806&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b00856&rft_dat=%3Cproquest_osti_%3E1810867916%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a458t-4cdb49c45c8d9ca28f8616e790dd812723c510a4c98d343b996bc4cc19e7bcbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810867916&rft_id=info:pmid/27326464&rfr_iscdi=true |