Loading…

Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy

Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2016-07, Vol.120 (26), p.14180-14186
Main Authors: Share, Keith, Carter, Rachel E, Nikolaev, Pavel, Hooper, Daylond, Oakes, Landon, Cohn, Adam P, Rao, Rahul, Puretzky, Alexander A, Geohegan, David B, Maruyama, Benji, Pint, Cary L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3
cites cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3
container_end_page 14186
container_issue 26
container_start_page 14180
container_title Journal of physical chemistry. C
container_volume 120
creator Share, Keith
Carter, Rachel E
Nikolaev, Pavel
Hooper, Daylond
Oakes, Landon
Cohn, Adam P
Rao, Rahul
Puretzky, Alexander A
Geohegan, David B
Maruyama, Benji
Pint, Cary L
description Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.
doi_str_mv 10.1021/acs.jpcc.6b03880
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1271889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h76982272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd49Bs-25mu7G29StBaqgh_n8DabdVO2yZKkSP-9qRVvnt7AmxlmBqFLSqaUMHoDOk7Xg9bTWU14VZEjNKKSs0kpiuL4D4vyFJ3FuCak4ITyEeqewfmooTf4zfZWe4chYsBzSNDvYsKtD3gRYOiMMxn4r9Td4iejO3A2Jqvx0kX72WVi8BtsXbZJW_wKG8hwMDqFbO-H3Tk6aaGP5uL3jtHHw_37_HGyelks53erCXAh00S0dWN4XTSC6EaXnBSlaSkteMNEwRmhIKVgFSulaWFW13SWazCmZa1lKUXLx-jq4OtzOhW1TTlrruVyFEVZSatKZhI5kHROF4Np1RDsBsJOUaL2c6o8p9rPqX7nzJLrg-Tn47fB5Rb_078BW7N5Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L</creator><creatorcontrib>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b03880</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY</subject><ispartof>Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14180-14186</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</citedby><cites>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1271889$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Share, Keith</creatorcontrib><creatorcontrib>Carter, Rachel E</creatorcontrib><creatorcontrib>Nikolaev, Pavel</creatorcontrib><creatorcontrib>Hooper, Daylond</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</description><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrd49Bs-25mu7G29StBaqgh_n8DabdVO2yZKkSP-9qRVvnt7AmxlmBqFLSqaUMHoDOk7Xg9bTWU14VZEjNKKSs0kpiuL4D4vyFJ3FuCak4ITyEeqewfmooTf4zfZWe4chYsBzSNDvYsKtD3gRYOiMMxn4r9Td4iejO3A2Jqvx0kX72WVi8BtsXbZJW_wKG8hwMDqFbO-H3Tk6aaGP5uL3jtHHw_37_HGyelks53erCXAh00S0dWN4XTSC6EaXnBSlaSkteMNEwRmhIKVgFSulaWFW13SWazCmZa1lKUXLx-jq4OtzOhW1TTlrruVyFEVZSatKZhI5kHROF4Np1RDsBsJOUaL2c6o8p9rPqX7nzJLrg-Tn47fB5Rb_078BW7N5Og</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Share, Keith</creator><creator>Carter, Rachel E</creator><creator>Nikolaev, Pavel</creator><creator>Hooper, Daylond</creator><creator>Oakes, Landon</creator><creator>Cohn, Adam P</creator><creator>Rao, Rahul</creator><creator>Puretzky, Alexander A</creator><creator>Geohegan, David B</creator><creator>Maruyama, Benji</creator><creator>Pint, Cary L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160707</creationdate><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><author>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Share, Keith</creatorcontrib><creatorcontrib>Carter, Rachel E</creatorcontrib><creatorcontrib>Nikolaev, Pavel</creatorcontrib><creatorcontrib>Hooper, Daylond</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Share, Keith</au><au>Carter, Rachel E</au><au>Nikolaev, Pavel</au><au>Hooper, Daylond</au><au>Oakes, Landon</au><au>Cohn, Adam P</au><au>Rao, Rahul</au><au>Puretzky, Alexander A</au><au>Geohegan, David B</au><au>Maruyama, Benji</au><au>Pint, Cary L</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>120</volume><issue>26</issue><spage>14180</spage><epage>14186</epage><pages>14180-14186</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b03880</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14180-14186
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1271889
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
title Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Silicon%20as%20a%20Catalyst%20for%20Graphene%20Growth:%20Mechanistic%20Insight%20from%20in%20Situ%20Raman%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Share,%20Keith&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-07-07&rft.volume=120&rft.issue=26&rft.spage=14180&rft.epage=14186&rft.pages=14180-14186&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b03880&rft_dat=%3Cacs_osti_%3Eh76982272%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true