Loading…
Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy
Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide...
Saved in:
Published in: | Journal of physical chemistry. C 2016-07, Vol.120 (26), p.14180-14186 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3 |
container_end_page | 14186 |
container_issue | 26 |
container_start_page | 14180 |
container_title | Journal of physical chemistry. C |
container_volume | 120 |
creator | Share, Keith Carter, Rachel E Nikolaev, Pavel Hooper, Daylond Oakes, Landon Cohn, Adam P Rao, Rahul Puretzky, Alexander A Geohegan, David B Maruyama, Benji Pint, Cary L |
description | Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons. |
doi_str_mv | 10.1021/acs.jpcc.6b03880 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1271889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h76982272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd49Bs-25mu7G29StBaqgh_n8DabdVO2yZKkSP-9qRVvnt7AmxlmBqFLSqaUMHoDOk7Xg9bTWU14VZEjNKKSs0kpiuL4D4vyFJ3FuCak4ITyEeqewfmooTf4zfZWe4chYsBzSNDvYsKtD3gRYOiMMxn4r9Td4iejO3A2Jqvx0kX72WVi8BtsXbZJW_wKG8hwMDqFbO-H3Tk6aaGP5uL3jtHHw_37_HGyelks53erCXAh00S0dWN4XTSC6EaXnBSlaSkteMNEwRmhIKVgFSulaWFW13SWazCmZa1lKUXLx-jq4OtzOhW1TTlrruVyFEVZSatKZhI5kHROF4Np1RDsBsJOUaL2c6o8p9rPqX7nzJLrg-Tn47fB5Rb_078BW7N5Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L</creator><creatorcontrib>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b03880</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY</subject><ispartof>Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14180-14186</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</citedby><cites>FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1271889$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Share, Keith</creatorcontrib><creatorcontrib>Carter, Rachel E</creatorcontrib><creatorcontrib>Nikolaev, Pavel</creatorcontrib><creatorcontrib>Hooper, Daylond</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</description><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrd49Bs-25mu7G29StBaqgh_n8DabdVO2yZKkSP-9qRVvnt7AmxlmBqFLSqaUMHoDOk7Xg9bTWU14VZEjNKKSs0kpiuL4D4vyFJ3FuCak4ITyEeqewfmooTf4zfZWe4chYsBzSNDvYsKtD3gRYOiMMxn4r9Td4iejO3A2Jqvx0kX72WVi8BtsXbZJW_wKG8hwMDqFbO-H3Tk6aaGP5uL3jtHHw_37_HGyelks53erCXAh00S0dWN4XTSC6EaXnBSlaSkteMNEwRmhIKVgFSulaWFW13SWazCmZa1lKUXLx-jq4OtzOhW1TTlrruVyFEVZSatKZhI5kHROF4Np1RDsBsJOUaL2c6o8p9rPqX7nzJLrg-Tn47fB5Rb_078BW7N5Og</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Share, Keith</creator><creator>Carter, Rachel E</creator><creator>Nikolaev, Pavel</creator><creator>Hooper, Daylond</creator><creator>Oakes, Landon</creator><creator>Cohn, Adam P</creator><creator>Rao, Rahul</creator><creator>Puretzky, Alexander A</creator><creator>Geohegan, David B</creator><creator>Maruyama, Benji</creator><creator>Pint, Cary L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160707</creationdate><title>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</title><author>Share, Keith ; Carter, Rachel E ; Nikolaev, Pavel ; Hooper, Daylond ; Oakes, Landon ; Cohn, Adam P ; Rao, Rahul ; Puretzky, Alexander A ; Geohegan, David B ; Maruyama, Benji ; Pint, Cary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Share, Keith</creatorcontrib><creatorcontrib>Carter, Rachel E</creatorcontrib><creatorcontrib>Nikolaev, Pavel</creatorcontrib><creatorcontrib>Hooper, Daylond</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Share, Keith</au><au>Carter, Rachel E</au><au>Nikolaev, Pavel</au><au>Hooper, Daylond</au><au>Oakes, Landon</au><au>Cohn, Adam P</au><au>Rao, Rahul</au><au>Puretzky, Alexander A</au><au>Geohegan, David B</au><au>Maruyama, Benji</au><au>Pint, Cary L</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>120</volume><issue>26</issue><spage>14180</spage><epage>14186</epage><pages>14180-14186</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. Here, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growth kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. This work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applicationssilicon and nanoscale carbons.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b03880</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14180-14186 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1271889 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY |
title | Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Silicon%20as%20a%20Catalyst%20for%20Graphene%20Growth:%20Mechanistic%20Insight%20from%20in%20Situ%20Raman%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Share,%20Keith&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-07-07&rft.volume=120&rft.issue=26&rft.spage=14180&rft.epage=14186&rft.pages=14180-14186&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b03880&rft_dat=%3Cacs_osti_%3Eh76982272%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a349t-4fbde3b5d40cdc73057ef1153d2453201a99428279efa6bb1601322c9bc9794f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |