Loading…

Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact Pb...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) 2015-12, Vol.54 (49), p.14862-14865
Main Authors: Yang, Bin, Dyck, Ondrej, Poplawsky, Jonathan, Keum, Jong, Das, Sanjib, Puretzky, Alexander, Aytug, Tolga, Joshi, Pooran C., Rouleau, Christopher M., Duscher, Gerd, Geohegan, David B., Xiao, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3
cites cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3
container_end_page 14865
container_issue 49
container_start_page 14862
container_title Angewandte Chemie (International ed.)
container_volume 54
creator Yang, Bin
Dyck, Ondrej
Poplawsky, Jonathan
Keum, Jong
Das, Sanjib
Puretzky, Alexander
Aytug, Tolga
Joshi, Pooran C.
Rouleau, Christopher M.
Duscher, Gerd
Geohegan, David B.
Xiao, Kai
description A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films. A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.
doi_str_mv 10.1002/anie.201505882
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1279393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957203631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</originalsourceid><addsrcrecordid>eNqFkc9v0zAYhiMEYmNw5YgsuHBJ8a_E9rEqXTdUlWoa4mg5jq26S-JiO9t64l_HVUeFOMDJ_qTnffR9eoviLYITBCH-pAZnJhiiClac42fFOaowKglj5Hn-U0JKxit0VryKcZt5zmH9sjjDNeV1xel58XPmhxR816mmM2AR_EPaAG_B2gR_H-9cMuDSdX0EzR7ceN-Xt6bfmaDSGAyYugDmjzsfD4P1ebDWaWeGBNadGlQAVyZl0XYcdHJ-AOuNT_7ed0k5DWam6-Lr4oVVXTRvnt6L4tvl_HZ2VS6_Lq5n02WpGcK4pMJWyjKq8-JYENiqFqIWMk5bjRgTUGBBGwg1wtqKpsa0gqrFjSU2J6AhF8X7o9fH5GTU-TC90X4YjE4SYSaIIBn6eIR2wf8YTUyyd1HnNdVg_BglYjXknFW8zuiHv9CtH8OQT5CYCgo5xgL9i8quGjNEIczU5Ejp4GMMxspdcL0Ke4mgPLQsDy3LU8s58O5JOza9aU_471ozII7Ag-vM_j86OV1dz_-Ul8esi8k8nrIq3MmaEVbJ76uFvPm8qr8IJOSS_AKOU8Ht</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766271400</pqid></control><display><type>article</type><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai</creator><creatorcontrib>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films. A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201505882</identifier><identifier>PMID: 26486584</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Air exposure ; Air temperature ; Annealing ; Crystal defects ; Crystal structure ; Crystallinity ; Degree of crystallinity ; Diffusion layers ; Diffusion length ; Heat treatment ; Heterojunctions ; Interdiffusion ; in situ X-ray diffraction ; Performance degradation ; Perovskites ; Photovoltaic cells ; photovoltaic devices ; Photovoltaics ; Radioactivity ; Room temperature ; SOLAR ENERGY ; Temperature ; thin films</subject><ispartof>Angewandte Chemie (International ed.), 2015-12, Vol.54 (49), p.14862-14865</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</citedby><cites>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26486584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1279393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Dyck, Ondrej</creatorcontrib><creatorcontrib>Poplawsky, Jonathan</creatorcontrib><creatorcontrib>Keum, Jong</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Puretzky, Alexander</creatorcontrib><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Joshi, Pooran C.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films. A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</description><subject>Air exposure</subject><subject>Air temperature</subject><subject>Annealing</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degree of crystallinity</subject><subject>Diffusion layers</subject><subject>Diffusion length</subject><subject>Heat treatment</subject><subject>Heterojunctions</subject><subject>Interdiffusion</subject><subject>in situ X-ray diffraction</subject><subject>Performance degradation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>photovoltaic devices</subject><subject>Photovoltaics</subject><subject>Radioactivity</subject><subject>Room temperature</subject><subject>SOLAR ENERGY</subject><subject>Temperature</subject><subject>thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9v0zAYhiMEYmNw5YgsuHBJ8a_E9rEqXTdUlWoa4mg5jq26S-JiO9t64l_HVUeFOMDJ_qTnffR9eoviLYITBCH-pAZnJhiiClac42fFOaowKglj5Hn-U0JKxit0VryKcZt5zmH9sjjDNeV1xel58XPmhxR816mmM2AR_EPaAG_B2gR_H-9cMuDSdX0EzR7ceN-Xt6bfmaDSGAyYugDmjzsfD4P1ebDWaWeGBNadGlQAVyZl0XYcdHJ-AOuNT_7ed0k5DWam6-Lr4oVVXTRvnt6L4tvl_HZ2VS6_Lq5n02WpGcK4pMJWyjKq8-JYENiqFqIWMk5bjRgTUGBBGwg1wtqKpsa0gqrFjSU2J6AhF8X7o9fH5GTU-TC90X4YjE4SYSaIIBn6eIR2wf8YTUyyd1HnNdVg_BglYjXknFW8zuiHv9CtH8OQT5CYCgo5xgL9i8quGjNEIczU5Ejp4GMMxspdcL0Ke4mgPLQsDy3LU8s58O5JOza9aU_471ozII7Ag-vM_j86OV1dz_-Ul8esi8k8nrIq3MmaEVbJ76uFvPm8qr8IJOSS_AKOU8Ht</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yang, Bin</creator><creator>Dyck, Ondrej</creator><creator>Poplawsky, Jonathan</creator><creator>Keum, Jong</creator><creator>Das, Sanjib</creator><creator>Puretzky, Alexander</creator><creator>Aytug, Tolga</creator><creator>Joshi, Pooran C.</creator><creator>Rouleau, Christopher M.</creator><creator>Duscher, Gerd</creator><creator>Geohegan, David B.</creator><creator>Xiao, Kai</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><author>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air exposure</topic><topic>Air temperature</topic><topic>Annealing</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degree of crystallinity</topic><topic>Diffusion layers</topic><topic>Diffusion length</topic><topic>Heat treatment</topic><topic>Heterojunctions</topic><topic>Interdiffusion</topic><topic>in situ X-ray diffraction</topic><topic>Performance degradation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>photovoltaic devices</topic><topic>Photovoltaics</topic><topic>Radioactivity</topic><topic>Room temperature</topic><topic>SOLAR ENERGY</topic><topic>Temperature</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Dyck, Ondrej</creatorcontrib><creatorcontrib>Poplawsky, Jonathan</creatorcontrib><creatorcontrib>Keum, Jong</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Puretzky, Alexander</creatorcontrib><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Joshi, Pooran C.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bin</au><au>Dyck, Ondrej</au><au>Poplawsky, Jonathan</au><au>Keum, Jong</au><au>Das, Sanjib</au><au>Puretzky, Alexander</au><au>Aytug, Tolga</au><au>Joshi, Pooran C.</au><au>Rouleau, Christopher M.</au><au>Duscher, Gerd</au><au>Geohegan, David B.</au><au>Xiao, Kai</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>54</volume><issue>49</issue><spage>14862</spage><epage>14865</epage><pages>14862-14865</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films. A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26486584</pmid><doi>10.1002/anie.201505882</doi><tpages>4</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2015-12, Vol.54 (49), p.14862-14865
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1279393
source Wiley-Blackwell Read & Publish Collection
subjects Air exposure
Air temperature
Annealing
Crystal defects
Crystal structure
Crystallinity
Degree of crystallinity
Diffusion layers
Diffusion length
Heat treatment
Heterojunctions
Interdiffusion
in situ X-ray diffraction
Performance degradation
Perovskites
Photovoltaic cells
photovoltaic devices
Photovoltaics
Radioactivity
Room temperature
SOLAR ENERGY
Temperature
thin films
title Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Growth%20of%20Perovskite%20Films%20by%20Room-Temperature%20Air%20Exposure%20for%20Efficient%20Planar%20Heterojunction%20Photovoltaic%20Cells&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Yang,%20Bin&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2015-12-01&rft.volume=54&rft.issue=49&rft.spage=14862&rft.epage=14865&rft.pages=14862-14865&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201505882&rft_dat=%3Cproquest_osti_%3E3957203631%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766271400&rft_id=info:pmid/26486584&rfr_iscdi=true