Loading…
Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells
A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact Pb...
Saved in:
Published in: | Angewandte Chemie (International ed.) 2015-12, Vol.54 (49), p.14862-14865 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3 |
container_end_page | 14865 |
container_issue | 49 |
container_start_page | 14862 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 54 |
creator | Yang, Bin Dyck, Ondrej Poplawsky, Jonathan Keum, Jong Das, Sanjib Puretzky, Alexander Aytug, Tolga Joshi, Pooran C. Rouleau, Christopher M. Duscher, Gerd Geohegan, David B. Xiao, Kai |
description | A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films.
A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively. |
doi_str_mv | 10.1002/anie.201505882 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1279393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957203631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</originalsourceid><addsrcrecordid>eNqFkc9v0zAYhiMEYmNw5YgsuHBJ8a_E9rEqXTdUlWoa4mg5jq26S-JiO9t64l_HVUeFOMDJ_qTnffR9eoviLYITBCH-pAZnJhiiClac42fFOaowKglj5Hn-U0JKxit0VryKcZt5zmH9sjjDNeV1xel58XPmhxR816mmM2AR_EPaAG_B2gR_H-9cMuDSdX0EzR7ceN-Xt6bfmaDSGAyYugDmjzsfD4P1ebDWaWeGBNadGlQAVyZl0XYcdHJ-AOuNT_7ed0k5DWam6-Lr4oVVXTRvnt6L4tvl_HZ2VS6_Lq5n02WpGcK4pMJWyjKq8-JYENiqFqIWMk5bjRgTUGBBGwg1wtqKpsa0gqrFjSU2J6AhF8X7o9fH5GTU-TC90X4YjE4SYSaIIBn6eIR2wf8YTUyyd1HnNdVg_BglYjXknFW8zuiHv9CtH8OQT5CYCgo5xgL9i8quGjNEIczU5Ejp4GMMxspdcL0Ke4mgPLQsDy3LU8s58O5JOza9aU_471ozII7Ag-vM_j86OV1dz_-Ul8esi8k8nrIq3MmaEVbJ76uFvPm8qr8IJOSS_AKOU8Ht</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766271400</pqid></control><display><type>article</type><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai</creator><creatorcontrib>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films.
A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201505882</identifier><identifier>PMID: 26486584</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Air exposure ; Air temperature ; Annealing ; Crystal defects ; Crystal structure ; Crystallinity ; Degree of crystallinity ; Diffusion layers ; Diffusion length ; Heat treatment ; Heterojunctions ; Interdiffusion ; in situ X-ray diffraction ; Performance degradation ; Perovskites ; Photovoltaic cells ; photovoltaic devices ; Photovoltaics ; Radioactivity ; Room temperature ; SOLAR ENERGY ; Temperature ; thin films</subject><ispartof>Angewandte Chemie (International ed.), 2015-12, Vol.54 (49), p.14862-14865</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</citedby><cites>FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26486584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1279393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Dyck, Ondrej</creatorcontrib><creatorcontrib>Poplawsky, Jonathan</creatorcontrib><creatorcontrib>Keum, Jong</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Puretzky, Alexander</creatorcontrib><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Joshi, Pooran C.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films.
A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</description><subject>Air exposure</subject><subject>Air temperature</subject><subject>Annealing</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degree of crystallinity</subject><subject>Diffusion layers</subject><subject>Diffusion length</subject><subject>Heat treatment</subject><subject>Heterojunctions</subject><subject>Interdiffusion</subject><subject>in situ X-ray diffraction</subject><subject>Performance degradation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>photovoltaic devices</subject><subject>Photovoltaics</subject><subject>Radioactivity</subject><subject>Room temperature</subject><subject>SOLAR ENERGY</subject><subject>Temperature</subject><subject>thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9v0zAYhiMEYmNw5YgsuHBJ8a_E9rEqXTdUlWoa4mg5jq26S-JiO9t64l_HVUeFOMDJ_qTnffR9eoviLYITBCH-pAZnJhiiClac42fFOaowKglj5Hn-U0JKxit0VryKcZt5zmH9sjjDNeV1xel58XPmhxR816mmM2AR_EPaAG_B2gR_H-9cMuDSdX0EzR7ceN-Xt6bfmaDSGAyYugDmjzsfD4P1ebDWaWeGBNadGlQAVyZl0XYcdHJ-AOuNT_7ed0k5DWam6-Lr4oVVXTRvnt6L4tvl_HZ2VS6_Lq5n02WpGcK4pMJWyjKq8-JYENiqFqIWMk5bjRgTUGBBGwg1wtqKpsa0gqrFjSU2J6AhF8X7o9fH5GTU-TC90X4YjE4SYSaIIBn6eIR2wf8YTUyyd1HnNdVg_BglYjXknFW8zuiHv9CtH8OQT5CYCgo5xgL9i8quGjNEIczU5Ejp4GMMxspdcL0Ke4mgPLQsDy3LU8s58O5JOza9aU_471ozII7Ag-vM_j86OV1dz_-Ul8esi8k8nrIq3MmaEVbJ76uFvPm8qr8IJOSS_AKOU8Ht</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yang, Bin</creator><creator>Dyck, Ondrej</creator><creator>Poplawsky, Jonathan</creator><creator>Keum, Jong</creator><creator>Das, Sanjib</creator><creator>Puretzky, Alexander</creator><creator>Aytug, Tolga</creator><creator>Joshi, Pooran C.</creator><creator>Rouleau, Christopher M.</creator><creator>Duscher, Gerd</creator><creator>Geohegan, David B.</creator><creator>Xiao, Kai</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</title><author>Yang, Bin ; Dyck, Ondrej ; Poplawsky, Jonathan ; Keum, Jong ; Das, Sanjib ; Puretzky, Alexander ; Aytug, Tolga ; Joshi, Pooran C. ; Rouleau, Christopher M. ; Duscher, Gerd ; Geohegan, David B. ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air exposure</topic><topic>Air temperature</topic><topic>Annealing</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degree of crystallinity</topic><topic>Diffusion layers</topic><topic>Diffusion length</topic><topic>Heat treatment</topic><topic>Heterojunctions</topic><topic>Interdiffusion</topic><topic>in situ X-ray diffraction</topic><topic>Performance degradation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>photovoltaic devices</topic><topic>Photovoltaics</topic><topic>Radioactivity</topic><topic>Room temperature</topic><topic>SOLAR ENERGY</topic><topic>Temperature</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Dyck, Ondrej</creatorcontrib><creatorcontrib>Poplawsky, Jonathan</creatorcontrib><creatorcontrib>Keum, Jong</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Puretzky, Alexander</creatorcontrib><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Joshi, Pooran C.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bin</au><au>Dyck, Ondrej</au><au>Poplawsky, Jonathan</au><au>Keum, Jong</au><au>Das, Sanjib</au><au>Puretzky, Alexander</au><au>Aytug, Tolga</au><au>Joshi, Pooran C.</au><au>Rouleau, Christopher M.</au><au>Duscher, Gerd</au><au>Geohegan, David B.</au><au>Xiao, Kai</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>54</volume><issue>49</issue><spage>14862</spage><epage>14865</epage><pages>14862-14865</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films.
A breath of fresh air: Simple room‐temperature air exposure can drive the interdiffusion between perovskite precursor layers and crystallize the perovskite thin films. The obtained perovskite films show high crystallinity and well‐aligned orientation. The devices with and without a TiO2 electron transporting layer yielded high efficiencies of 15.6 % and 13.8 %, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26486584</pmid><doi>10.1002/anie.201505882</doi><tpages>4</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2015-12, Vol.54 (49), p.14862-14865 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1279393 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Air exposure Air temperature Annealing Crystal defects Crystal structure Crystallinity Degree of crystallinity Diffusion layers Diffusion length Heat treatment Heterojunctions Interdiffusion in situ X-ray diffraction Performance degradation Perovskites Photovoltaic cells photovoltaic devices Photovoltaics Radioactivity Room temperature SOLAR ENERGY Temperature thin films |
title | Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Growth%20of%20Perovskite%20Films%20by%20Room-Temperature%20Air%20Exposure%20for%20Efficient%20Planar%20Heterojunction%20Photovoltaic%20Cells&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Yang,%20Bin&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2015-12-01&rft.volume=54&rft.issue=49&rft.spage=14862&rft.epage=14865&rft.pages=14862-14865&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201505882&rft_dat=%3Cproquest_osti_%3E3957203631%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7122-49f5af74c6482930dad01d0784dc177909294b00c12cf9b62450ad2bf3f6480e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766271400&rft_id=info:pmid/26486584&rfr_iscdi=true |