Loading…

Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2016-01, Vol.163 (11), p.F3105-F3112
Main Authors: Alia, Shaun M., Rasimick, Brian, Ngo, Chilan, Neyerlin, K. C., Kocha, Shyam S., Pylypenko, Svitlana, Xu, Hui, Pivovar, Bryan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (≥1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. The electrocatalyst RDE results have also been compared to results obtained for performance and durability in electrolysis cells.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0151611jes