Loading…

Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical...

Full description

Saved in:
Bibliographic Details
Published in:Nano energy 2016-10, Vol.28 (C), p.164-171
Main Authors: Xu, Yahong, Hu, Enyuan, Yang, Feifei, Corbett, Jeff, Sun, Zhihong, Lyu, Yingchun, Yu, Xiqian, Liu, Yijin, Yang, Xiao-Qing, Li, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63
cites cdi_FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63
container_end_page 171
container_issue C
container_start_page 164
container_title Nano energy
container_volume 28
creator Xu, Yahong
Hu, Enyuan
Yang, Feifei
Corbett, Jeff
Sun, Zhihong
Lyu, Yingchun
Yu, Xiqian
Liu, Yijin
Yang, Xiao-Qing
Li, Hong
description Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability. [Display omitted] •Direct observation of chemical and morphological heterogeneity of Li2Ru0.5Mn0.5O3 cathode at particle level.•Correlates the cathode material's meso/nano scale heterogeneity to its voltage fade.•Understanding of the meso/nano scale morphology's impact on the electro-chemical reaction pathway.
doi_str_mv 10.1016/j.nanoen.2016.08.039
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1310829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211285516303275</els_id><sourcerecordid>S2211285516303275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63</originalsourceid><addsrcrecordid>eNp9Uctq3DAU9aKBhiR_0IXo3q4kjx15EwjpI4WBLJJCd0JzdW1rOpHcKzngXT4i39AP65dU7mQdSSDEeehcTlF8ELwSXLSf9pU3PqCvZH5VXFW87t4Vp1IKUUrVNO-Lixj3PK-2EZdCnhZ_7hPNkGYyB-Z8woFcWv4-v9yjIRidH1gakf3ChfUGUiCWAovzNBHG-B96CodkBsywRRZ6tnUlORjZwSxIaBmYNIYMPZqE5MxhVVGYh5HVn9nPkszC3KMZ1p-MtyxOCIlChDAtLCGM3v2eMZ4XJ33W4sXrfVb8-Prl4ea23N59-35zvS2h5l0qN4bLvDve2HpnO7uTRoluZ2sUdcv55tJCo1pQBlSLEpSSIh_kXEkFfd_WZ8XHo2-IyekIbo0AwfucSotaZGKXSZsjCXLQSNjrifIMtGjB9dqD3utjD3rtQXOlcw9ZdnWUYR7gySGt_ugBraPV3gb3tsE_48OZPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques</title><source>ScienceDirect Freedom Collection</source><creator>Xu, Yahong ; Hu, Enyuan ; Yang, Feifei ; Corbett, Jeff ; Sun, Zhihong ; Lyu, Yingchun ; Yu, Xiqian ; Liu, Yijin ; Yang, Xiao-Qing ; Li, Hong</creator><creatorcontrib>Xu, Yahong ; Hu, Enyuan ; Yang, Feifei ; Corbett, Jeff ; Sun, Zhihong ; Lyu, Yingchun ; Yu, Xiqian ; Liu, Yijin ; Yang, Xiao-Qing ; Li, Hong ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability. [Display omitted] •Direct observation of chemical and morphological heterogeneity of Li2Ru0.5Mn0.5O3 cathode at particle level.•Correlates the cathode material's meso/nano scale heterogeneity to its voltage fade.•Understanding of the meso/nano scale morphology's impact on the electro-chemical reaction pathway.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2016.08.039</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Cathode ; ENERGY STORAGE ; Lithium rich layered oxides ; Lithium-ion batteries ; Transmission X-ray microscopy ; Voltage fade</subject><ispartof>Nano energy, 2016-10, Vol.28 (C), p.164-171</ispartof><rights>2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63</citedby><cites>FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1310829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Corbett, Jeff</creatorcontrib><creatorcontrib>Sun, Zhihong</creatorcontrib><creatorcontrib>Lyu, Yingchun</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques</title><title>Nano energy</title><description>Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability. [Display omitted] •Direct observation of chemical and morphological heterogeneity of Li2Ru0.5Mn0.5O3 cathode at particle level.•Correlates the cathode material's meso/nano scale heterogeneity to its voltage fade.•Understanding of the meso/nano scale morphology's impact on the electro-chemical reaction pathway.</description><subject>Cathode</subject><subject>ENERGY STORAGE</subject><subject>Lithium rich layered oxides</subject><subject>Lithium-ion batteries</subject><subject>Transmission X-ray microscopy</subject><subject>Voltage fade</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3DAU9aKBhiR_0IXo3q4kjx15EwjpI4WBLJJCd0JzdW1rOpHcKzngXT4i39AP65dU7mQdSSDEeehcTlF8ELwSXLSf9pU3PqCvZH5VXFW87t4Vp1IKUUrVNO-Lixj3PK-2EZdCnhZ_7hPNkGYyB-Z8woFcWv4-v9yjIRidH1gakf3ChfUGUiCWAovzNBHG-B96CodkBsywRRZ6tnUlORjZwSxIaBmYNIYMPZqE5MxhVVGYh5HVn9nPkszC3KMZ1p-MtyxOCIlChDAtLCGM3v2eMZ4XJ33W4sXrfVb8-Prl4ea23N59-35zvS2h5l0qN4bLvDve2HpnO7uTRoluZ2sUdcv55tJCo1pQBlSLEpSSIh_kXEkFfd_WZ8XHo2-IyekIbo0AwfucSotaZGKXSZsjCXLQSNjrifIMtGjB9dqD3utjD3rtQXOlcw9ZdnWUYR7gySGt_ugBraPV3gb3tsE_48OZPw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Xu, Yahong</creator><creator>Hu, Enyuan</creator><creator>Yang, Feifei</creator><creator>Corbett, Jeff</creator><creator>Sun, Zhihong</creator><creator>Lyu, Yingchun</creator><creator>Yu, Xiqian</creator><creator>Liu, Yijin</creator><creator>Yang, Xiao-Qing</creator><creator>Li, Hong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201610</creationdate><title>Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques</title><author>Xu, Yahong ; Hu, Enyuan ; Yang, Feifei ; Corbett, Jeff ; Sun, Zhihong ; Lyu, Yingchun ; Yu, Xiqian ; Liu, Yijin ; Yang, Xiao-Qing ; Li, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cathode</topic><topic>ENERGY STORAGE</topic><topic>Lithium rich layered oxides</topic><topic>Lithium-ion batteries</topic><topic>Transmission X-ray microscopy</topic><topic>Voltage fade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Corbett, Jeff</creatorcontrib><creatorcontrib>Sun, Zhihong</creatorcontrib><creatorcontrib>Lyu, Yingchun</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yahong</au><au>Hu, Enyuan</au><au>Yang, Feifei</au><au>Corbett, Jeff</au><au>Sun, Zhihong</au><au>Lyu, Yingchun</au><au>Yu, Xiqian</au><au>Liu, Yijin</au><au>Yang, Xiao-Qing</au><au>Li, Hong</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques</atitle><jtitle>Nano energy</jtitle><date>2016-10</date><risdate>2016</risdate><volume>28</volume><issue>C</issue><spage>164</spage><epage>171</epage><pages>164-171</pages><issn>2211-2855</issn><abstract>Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability. [Display omitted] •Direct observation of chemical and morphological heterogeneity of Li2Ru0.5Mn0.5O3 cathode at particle level.•Correlates the cathode material's meso/nano scale heterogeneity to its voltage fade.•Understanding of the meso/nano scale morphology's impact on the electro-chemical reaction pathway.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2016.08.039</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-2855
ispartof Nano energy, 2016-10, Vol.28 (C), p.164-171
issn 2211-2855
language eng
recordid cdi_osti_scitechconnect_1310829
source ScienceDirect Freedom Collection
subjects Cathode
ENERGY STORAGE
Lithium rich layered oxides
Lithium-ion batteries
Transmission X-ray microscopy
Voltage fade
title Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20integrity%E2%80%94Searching%20the%20key%20factor%20to%20suppress%20the%20voltage%20fade%20of%20Li-rich%20layered%20cathode%20materials%20through%203D%20X-ray%20imaging%20and%20spectroscopy%20techniques&rft.jtitle=Nano%20energy&rft.au=Xu,%20Yahong&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2016-10&rft.volume=28&rft.issue=C&rft.spage=164&rft.epage=171&rft.pages=164-171&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2016.08.039&rft_dat=%3Celsevier_osti_%3ES2211285516303275%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-4a02020905d3bd9db2a819bd3e1360047dc586c8ac86e2c8821821e00828cff63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true