Loading…
Review of the Current State of Knowledge on the Effects of Radiation on Concrete
A review of the current state of knowledge on the effects of radiation on concrete in nuclear power production applications is presented. Emphasis is placed on the effects of radiation damage, as reflected by changes in engineering properties of concrete, in the evaluation of the long-term operation...
Saved in:
Published in: | Journal of Advanced Concrete Technology 2016/07/12, Vol.14(7), pp.368-383 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A review of the current state of knowledge on the effects of radiation on concrete in nuclear power production applications is presented. Emphasis is placed on the effects of radiation damage, as reflected by changes in engineering properties of concrete, in the evaluation of the long-term operation and for plant life or aging management of nuclear power plants (NPPs) in Japan, Spain, and the United States. National issues and concerns are described for Japan and the United States followed by a discussion of the fundamental understanding of the effects of radiation on concrete. Specifically, the effects of temperature, moisture content, and irradiation on ordinary Portland cement paste and the role of temperature and neutron energy spectra on radiation-induced volumetric expansion (RIVE) of aggregate-forming minerals are described. This is followed by a discussion of the bounding conditions for extended operation; the significance of accelerated irradiation conditions; the role of temperature and creep; and how these issues are being incorporated into numerical and meso-scale models. From these insights on radiation damage, analyses of these effects on concrete structures are reviewed, and the current status of work in Japan and the United States is described. Also discussed is the recent formation of a new international scientific and technical organization, the International Committee on Irradiated Concrete, to provide a forum for timely information exchanges among organizations pursuing the identification, quantification, and modeling of the effects of radiation on concrete in commercial nuclear applications. The paper concludes with a discussion of research gaps, including (1) interpreting test-reactor data, (2) evaluating service-irradiated concrete for aging management and to inform radiation damage models with the Zorita NPP (Spain) serving as the first comprehensive test case, (3) irradiated-assisted alkali-silica reactions, and (4) RIVE under constrained conditions. |
---|---|
ISSN: | 1346-8014 1347-3913 |
DOI: | 10.3151/jact.14.368 |